
MODULE 13: SQL SERVER OPTIMIZATION

Module Overview
Microsoft Dynamics NAV 2013 runs on Microsoft SQL Server. This module covers
the integration between Microsoft Dynamics NAV with Microsoft SQL Server in
more detail.

Objectives

The objectives are as follows:

• Explain the advantages of SQL Server for Microsoft Dynamics NAV
2013.

• Work with and store tables and indexes.

• Use collation options and descriptions.

• Introduce SQL Server Query Optimizer.

• Explain the areas within Microsoft Dynamics NAV that are to be
optimized.

• Demonstrate how the Microsoft Dynamics® NAV
database driver allows the Microsoft Dynamics NAV clients to
communicate with SQL Server.

• Introduce the value of optimizing indexes to maximize performance.

• Describe the performance effect of locking, blocking, and deadlocks.

• Present how SIFT data is stored in SQL Server.

13 - 1 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

SQL Server for Microsoft Dynamics NAV
SQL Server is a comprehensive database platform that provides enterprise-class
data management with integrated business intelligence (BI) tools. SQL Server can
be characterized as a set-based engine. This means that SQL Server is very
efficient when it retrieves a set of records from a table, but less so when records
are accessed one at a time.

Access to SQL Server from Microsoft Dynamics NAV is performed with the
Microsoft Dynamics database driver that is discussed later in this module. The SQL
Server interface from Microsoft Dynamics NAV Server was rewritten for Microsoft
Dynamics NAV 2013 to use ADO.NET instead of ODBC. The advantages of the
new access layer are described later in this module.

When SQL Server receives a query (in the form of a Transact-SQL statement), it
uses the SQL Query Optimizer to create and execute the query. The Query
Optimizer evaluates the query and makes decisions about how to execute the
query in the execution plan. For example, the Query Optimizer decides which
index to use, whether to use parallel execution, and so on.

Query Optimizer assumes that the client generates queries according to its own
logic, and that these queries are not optimized for SQL Server. The primary criteria
that Query Optimizer uses to decide which execution plan to use is the
performance cost of executing the query.

SQL Server stores data in B+ tree structures. One index is used to store the data
physically on a disk. Other indexes are used to find a range and point to the data
in the main index. This main index is called the Clustered Index. On SQL Server,
you can define any index as the main (clustered) index. However, on the
MicrosoftDynamics NAV Development Environment it is the default primary key
of the table.

 Note: By default, the primary key of a table in Microsoft Dynamics NAV
becomes the clustered index. You can use the key property Clustered to define
another key to become the clustered index on SQL Server. We recommend that the
primary key and the clustered index be the same.

Microsoft Dynamics NAV 2013 no longer uses server cursors to retrieve records.
Instead, records are retrieved by using multiple active result sets (MARS).

13 - 2 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization

Representation of Microsoft Dynamics NAV Tables and
Indexes in SQL Server

By default, Microsoft Dynamics NAV provides unique data for each company in its
database. On SQL Server, each company in the development environment has its
own copy of each table.

Representation of Microsoft Dynamics NAV Tables and
Indexes in SQL Server

Each table in the Development Environment has a corresponding table in SQL
Server for every company in the database, with a name in the following format:

Table Name Format Example

<Company Name>$< Table
Name>

CRONUS International Ltd_$G_L
Entry

However, you can share data across companies by setting the DataPerCompany
table property to FALSE. In Microsoft Dynamics NAV terms, this is known as data
common to all companies. When the DataPerCompany property is turned
off, there is just one table in SQL Server that is accessed from every company in
the database. The naming convention for these common tables on SQL Server is
the same, but without the <Company Name>$ portion.

The Microsoft Dynamics NAV Development Environment uses naming
conventions that comply with SQL Server, such as not using special
characters. Some special characters are available in the table designer, and they
are translated to comply with the character set that is used on SQL Server.

The table has several indexes that represent the keys that are designed and
enabled in the table designer. The indexes have generic names in the following
format.

Index name format Example

$<Index Number> $1, $2, and so on

However, the primary key index uses the following name format.

Primary key name format Example

<Company Name>$< Table
Name>$0

CRONUS International Ltd_$G_L
Entry$0

13 - 3 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
By default, Microsoft Dynamics NAV clusters the primary key. Also by default,
Microsoft Dynamics NAV adds the rest of the primary key to every
secondary index. This makes the indexes unique and complies with the best
practices that are defined for SQL Server. Developers can make additional changes
to the way indexes are defined on SQL Server by using the MaintainSQLIndex,
SQLIndex, and Clustered properties on the keys that are defined in the table
designer.

To obtain a list of indexes and their definition in SQL Server, run the sp_helpindex
stored procedure in a query window, as follows.

Code Example

sp_helpindex "CRONUS International Ltd_$G_L Entry"
GO

The query outputs the index name if the index is clustered or unique, if there is a
primary key constraint, and also the index keys that are defined in the index.

There are some differences between the Dynamics NAV and SQL Server
terminology, as the following list describes.

SQL Server Terminology Dynamics NAV Terminology

Primary key constraint Primary key

Clustered index No equivalent

Nonclustered index Secondary key

Index key Field in a key definition

In SQL Server, a table does not have to have a clustered index. This is known as a
heap and can be used for archiving, because data is stored as it arrives. However,
heaps are not ideal for tables that are read, because reading from an unstructured
source is too slow.

Collation Options
SQL Server supports several collations. A collation encodes the rules that govern
the correct use of characters for either a language, such as Macedonian or Polish,
or an alphabet, such as Latin1_General (the Latin alphabet that is used by Western
European languages). Microsoft Dynamics NAV 2013 only supports the latest
Windows collations. Any database that is upgraded by Microsoft Dynamics NAV
2013 is converted to the most recent corresponding Windows collation. Each SQL
Server collation specifies the following three properties:

13 - 4 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
• The sort order to use for Unicode data types (nchar, nvarchar, and

ntext). A sort order defines the sequence in which characters are
sorted, and the way that characters are evaluated in comparison
operations.

• The sort order to use for non-Unicode character data types (char,
varchar, and text).

• The code page that is used to store non-Unicode character data.

You can specify SQL Server collations at any level. Each instance of SQL Server has
a defined default collation. This is the default collation for all objects in that
instance of SQL Server, unless otherwise specified. Each database can have its own
collation. This can differ from the default collation. You can specify separate
collations for each column, variable, or parameter. Microsoft Dynamics NAV sets
the database default collation for reference only. All columns that are created by
Microsoft Dynamics NAV explicitly has the collation set.

It is a good practice to set the collation as generic as possible to the language that
is most common to users. If all users speak the same language, set up SQL
Server with a collation that supports that language. For example, if all users speak
French, define a French collation on SQL Server. If users speak multiple languages,
define a collation that best supports the requirements of the various languages.
For example, if the majority of users speak western European languages, then
Latin1_General collation is the best option.

Collation settings are defined in the Microsoft Dynamics NAV Development
Environment when a database is created. You can change it afterward with some
limitations.

Demonstration: Open the Collation window

Ask Mort to verify the collation settings of the Dynamics NAV Database to update
the documentation.

Demonstration Steps

1. To open the collation window follow these steps.
a. Start the Microsoft Dynamics NAV Development Environment.
b. In the File menu, click Database and then Alter. The Alter

Database window opens.
c. In the Alter Database window, click the Collation tab. See

Collation Tab of the Alter Database Window.

13 - 5 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

FIGURE 13.1: THE COLLATION TAB OF THE ALTER DATABASE WINDOW

Collation Description

Select the name of a specific Windows collation from the drop-down list. Note
that when the Validate Code Page field is checked, only valid subsets of
collations are available in the list based on the Windows Locale. For example, the
following are subsets for the Latin1_General (1252) locale consecutively:

• Afrikaans, Basque, Catalan, Dutch, English, Faeroese, German,
Indonesian, Italian, Portuguese

• Danish, Norwegian

Sort Order

Select Sort Order options to use with the collation that you selected. These
options are Binary, Case-sensitive, and Accent-sensitive. Binary is the fastest
sorting order, and is case-sensitive and accent-sensitive. If you select Binary, the
Case-sensitive and Accent-sensitive options are not available.

SQL Server Query Optimizer
Query Optimizer is the brain of SQL Server when it decides how to execute a
query. SQL Server collects statistics about individual columns (single-column
statistics) or sets of columns (multicolumn statistics). Query Optimizer uses
statistics to estimate the selectivity of expressions, and therefore, the size of
intermediate and final query results. Good statistics let the optimizer accurately
assess the cost of different query plans and select a high-quality plan. All
information about a single statistics object is stored in several columns of a single
row in the sysindexes table, and in a statistics binary large object (statblob) that is
kept in an internal-only table.

13 - 6 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
SQL Server Statistics

SQL Server maintains some information at the table level. Tables are not part of a
statistics object, but SQL Server uses them occasionally during query cost
estimation. The following data is stored at the table level:

• Number of rows in the table or index (rows column in sys.sysindexes)

• Number of pages that are occupied by the table or index (dpages
column in sys.sysindexes)

SQL Server collects the following statistics about table columns and stores them in
a statistics object (statblob):

• Time that the statistics are collected

• Number of rows that are used to produce the histogram and density
information (described later)

• Average key length

• Single-column histogram that includes the number of steps

A histogram is a set of up to 200 values of a given column. All or a sample of the
values in a given column are sorted. The ordered sequence is divided into up to
199 intervals so that the most statistically significant information is captured.
Generally, these intervals are not of equal size.

 Note: The way that Microsoft Dynamics NAV executes queries disables the
use of histograms. You do this to enable performant reuse of query plans without
regard to actual parameter values. Microsoft Dynamics NAV uses the OPTIMIZE
FOR UNKNOWN option to guarantee this type of computation of the query
execution plan.

Users can view the statistical information when they run the DBCC
SHOW_STATISTICS command. For example, they can run it for index $6 in the
Cust. Ledger Entry table, as follows.

Code Example

DBCC SHOW_STATISTICS

("CRONUS International Ltd_$Cust_ Ledger Entry","$6")

GO

13 - 7 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
The result set has three sections, similar to the following.

FIGURE 13.2: DBCC SHOW_STATISTICS RESULTSET

Suppose that a user filters on the Document Type column in the Cust. Ledger
Entry table, for example, to look for all Credit Memo type entries. The Credit
Memo type entries have a value of Document Type that is equal to three.
Microsoft Dynamics NAV issues a query similar to the following.

Code Example

SELECT * FROM

"CRONUS International Ltd_$Cust_ Ledger Entry"

WHERE

"Document Type" = 3

GO

The Query Optimizer analyzes the usefulness of every index in the table so that
the query is executed at minimal cost. An index minimizes first the cost of data
retrieval, followed by costs of sorting, and so on. When you analyze this particular
index (index $6) from a data retrieval perspective, the Query Optimizer makes
most of its decisions based on the statistics in the following way.

Document Type is filtered because there are only three distinct values in the index
(refer to the All Density column in the previous table). This indicates that 0.25 of
the table is within the filtered set.

13 - 8 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
Based on this, the Query Optimizer decides that there is no point in using this
index to do this operation. This is because it has to load the index, scan the range,
and look up the data in the clustered indexes to return the results. Because there
is no better way to read the data, Query Optimizer decides to do a Clustered
Index Scan instead.

As a rule, if the selectivity is close and better than one percent, the index is
considered good. Be careful with this simple rule, because operations such as
SELECT TOP 1 (asking for the first record in a set) escalate the index benefit, and
the index will probably be used.

To continue with this example, filtering on a unique value makes the index help
with selectivity, such as the following.

Code Example

SELECT * FROM

"CRONUS International Ltd_$Cust_ Ledger Entry"

WHERE

"Document Type" = 3 AND

"Customer No_" = '10000'

GO

The combined selectivity is used, and a plan is calculated. This may result in a
decision to use this index.

However, if users do not filter on an index key or use the <> (not equal operator)
or use the OR operator, SQL Server cannot combine the subqueries. If the <>
operator is used, then the optimizer will assume 1-selectivity * number of rows. If
OR is used, the optimizer combines the selectivity. This may result in bad behavior,
such as the following.

Code Example

SELECT * FROM

"CRONUS International Ltd_$Cust_ Ledger Entry"

WHERE

"Customer No_" = '10000' AND

13 - 9 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
(("Document Type" = 3) OR ("Document Type" = 4))

GO

In this example, the Query Optimizer decides to use the index, doing a non-
clustered index seek, but it has to traverse the area of Document Type = 3.
Because the set is read from start to finish, it has the same effect as if the user did
a table scan.

Similarly, if the user leaves one of the index keys unfiltered, all the subtree index
entries must be scanned. There is one simple rule about performance: Scan is
bad. Seek is good. Developers must avoid scans as much as they can, ensure that
indexes are of a good selectivity, and that the queries do not have scan-like
behavior.

On the other side of the spectrum is an index that is too complex and is designed
to fully match the whole query, such as with eight index keys. If the index has
only four index keys, SQL Server scans a slightly larger set to provide the required
records, but at the extreme cost of having to maintain the composite index. This
delays every modification in the table, because SQL Server has to update the index
accordingly. In most cases, users have to optimize the transaction speed. If you
over-index the tables, then users pay a price in performance. If a specific report is
slow when fewer composite indexes are used, it might be worth it because
processing (such as posting inventory) is quicker.

Additionally, if a fairly small set is ordered by a different column, it is not
necessary for the index to fully support the sorting. SQL Server can efficiently sort
small result sets quickly.

The previous situation demonstrates that the way that indexes are designed and
used can severely affect SQL Server performance. Use the following principles:

• Reduce the number of indexes for faster table updates.

• Design indexes with index keys of good selectivity.

• Put index keys that are more likely to be filtered toward the
beginning of an index.

• If the filtered index keys point to a low number of records, you do not
have to add additional index keys to support index selectivity
or sorting. SQL Server returns the set sorted as you want.

• There is no point in indexing empty (unused) columns, or columns
that have the same value for all rows. This creates an additional
overhead with no benefit.

• Make sure that users filter on unique values in indexes; otherwise, SQL
Server performs in a manner that is similar to table scans.

13 - 10 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
• Do not make over selective index keys. If users index on DateTime

fields, for example, they force creation of a unique index leaf in the
index for each record in the table.

• Put date fields toward the end of the index, since the index is not
always filtered. If an index is always filtered on a unique value, then it
is a good index.

To determine whether an index is good, imagine a telephone book or list of
personal details that are designed to find people by name and surname, date of
birth, or Social Security number. Compare this to a telephone book that is indexed
by gender. When you design indexes, select those that support a high level of
selectivity. Common sense applies.

Optimize a Microsoft Dynamics NAV Application
There are several areas where users must focus when they optimize Microsoft
Dynamics NAV applications. These areas follow, in order of importance (based on
the processing costs):

• SIFT

• Indexes

• Locks

• Suboptimum code

• GUI

Optimizing SIFT Tables

Use SIFT tables in Microsoft Dynamics NAV version 5.0 and older, to implement
SIFT on the SQL Server, and store aggregate values for SumIndexFields for keys in
the source tables. Starting with version 5.0 Service Pack 1, these SIFT tables are
replaced by indexed views. Separate SIFT tables are no longer part of Microsoft
Dynamics NAV on SQL Server. This discussion section is included
because Microsoft Dynamics NAV developers can encounter issues about SIFT
tables in implementations of older versions of Microsoft Dynamics NAV. There is
similar overhead with indexed views.

The overhead of the separate SIFT indexes is very large and should be carefully
considered for activation. By default, Microsoft Dynamics NAV starts the SIFT
indexes when users create a new index with SumIndexFields. Users should review
all existing SIFT indexes and decide whether they really have to keep them started.

Users can deactivate the creation and maintenance of a SIFT index by using the
MaintainSIFTIndex property in the Microsoft Dynamics NAV key designer. If they
make the property FALSE, and there is no other maintained SIFT index that
supports the retrieval of the cumulative sum, Microsoft Dynamics NAV asks SQL
Server to calculate the total.

13 - 11 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
For example, if users have a Sales Line table and put Amount in the
SumIndexFields for the primary key (Document Type, Document No., Line No.), a
new SIFT table named CRONUS International Ltd_$37$0 is created and
maintained. When you use a CALCSUM function to display a FlowField in
Microsoft Dynamics NAV that displays the total of all Sales Lines for a specific
Sales Header (Order ORD-980001), the resulting query looks exactly like the
following.

Code Example

SELECT SUM(SUM$Amount) FROM

"CRONUS International Ltd_$Sales Line$VSIFT$0"

WHERE

"Document Type" = 1 AND

"Document No_" = 'ORD-980001'

If users make the SIFT table unavailable by clearing the MaintainSIFTIndex check
box, Microsoft Dynamics NAV still works, and the resulting query resembles the
following.

Code Example

SELECT SUM("Amount") FROM

"CRONUS International Ltd_$Sales Line"

WHERE

"Document Type" = 1 AND

"Document No_" = 'ORD-980001'

This is a very light load on CPU overhead compared to the large cost of
maintaining the SIFT indexes.

SIFT tables are very useful when users have to total a larger number of records.
Considering this information, users can check existing SIFT indexes and see
whether they need some level of detail. There is no need, for example, to store a
cumulative total of just a few records.

13 - 12 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
Optimize Indexes

The second largest Microsoft Dynamics NAV overhead is the processing load to
maintain indexes. The Microsoft Dynamics NAV database is over-indexed, because
customers require certain reports and pages to be ordered in different ways.
Therefore, many keys are made available for each sequence. However, SQL Server
can sort data directly and quickly if the set is small. Therefore, you do not have to
keep indexes for sorting purposes only. For example, in the Warehouse Activity
Line table, there are several keys that begin with Activity Type and No. fields,
such as the following.

Code Example

“Activity Type,No.,Sorting Sequence No.”
“Activity Type,No.,Shelf No.”
“Activity Type,No.,Action Type,Bin Code”
etc.

These indexes are not needed on SQL Server, because the Microsoft Dynamics
NAV code always filters on Activity Type and No. fields when it uses these keys.
In SQL Server, the Query Optimizer looks at the filter and realizes that the
clustered index is Activity Type No_, and Line No_. It also determines that the set
is small, and that it does not have to use an index to retrieve the set and return it
in that specific order. It uses only the clustered index for these operations.

Since the whole functionality is not used by customers, if they never select the
stock by Sorting Sequence No., then they do not have to maintain the index.

Developers must analyze the existing indexes and focus on use and benefits
compared to the processing overhead, and then determine the appropriate
action. Decide between disabling the index completely by using the key property
Enable, the KeyGroups property, or the MaintainSQLIndex property. Indexes that
remain active can change structure by using the SQLIndex property. Developers
can also make the table clustered by a different index.

Enabled PropertyThe Enabled property turns a specific key on and off. If you are
not using the key or if you rarely use the key, you may want to mark it as disabled
for performance reasons.

KeyGroups Property

Make one or more keys a member of a predefined key group. This allows for
the key to be defined, but enabled only when it is used. Use the KeyGroups
property to select the predefined key groups. Select the KeyGroups option on the
Database Information window (select File > Database > Information >
Tables). There are key groups already defined, such as Acc(Dim),
Item(MFG), but more can be created and assigned to keys.

13 - 13 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
The purpose of key Key groups set up a group of special keys that are infrequently
used (such as for a special report that is run one time every year). Adding many
keys to tables eventually decreases performance. When you use key groups it
makes it possible to have the necessary keys defined, but only active when it is
necessary.

MaintainSQLIndex Property

This property determines whether an SQL Server index that corresponds to the
Microsoft Dynamics NAV key should be created (when set to Yes) or dropped
(when set to No). A Microsoft Dynamics NAV key is created to sort and search for
data in a table by the required key fields. However, SQL Server can sort data
without an index on the fields to be sorted. If an index exists, sorting by the fields
matching the index is faster, but modifications to the table will be slower. The
more indexes there are on a table, the slower the modifications become. If a key
must be created to allow for only occasional sorting (for example, when it is
running infrequent reports), users can disable this property to prevent slow
modifications to the table. Additionally, if there are many keys in a table, SQL
Server does not use all the corresponding indexes. To eliminate the overhead of
the indexes we recommend not maintaining them by setting MaintainSQLIndex to
No. Then, if there is a reference in the C/AL code to the key, it does not cause an
error message because the key still exists.

SQLIndex Property

This property lets users define the fields that are used in the SQL index. The fields
in the SQL index can be any of the following:

• Different from the fields that are defined in the key in Microsoft
Dynamics NAV. There can be fewer fields or more fields.

• Arranged in a different order.

If the key in question is not the primary key and you use the SQLIndex property to
define the index on SQL Server, the index that is created contains exactly the fields
that users specify. It is not necessarily a unique index. It will only be a unique index
if it contains all fields from the primary key.

If you define the SQL index for the primary key, it must include all the fields that
are defined in the Microsoft Dynamics NAV primary key. You can add additional
fields that can be rearranged to suit individual needs.

Clustered Property

Use this property to determine which index is clustered. By default, the index that
corresponds to the Microsoft Dynamics NAV primary key is clustered.

13 - 14 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
The Index Usage Query

The Index Usage Query was released on the Microsoft Dynamics NAV Team Blog
and can be found in the following location.

 Index Usage Query on Dynamics NAV Team Blog

http://go.microsoft.com/fwlink/?LinkId=269777

This query shows a list of all tables and indexes in an SQL database to help identify
tables where the most blocks occur, and to give a starting point for index tuning.

Use the Index Information Query to see the number of records in each table. By
changing ORDER BY, you also can use it to see which index causes the most
blocking, wait time, updates, or locks. Use the Index Information Query to
compare Index Updates with Index Reads for an idea of cost versus benefit for
each index. Then you can use this information to decide whether to maintain
certain indexes.

To summarize, the Index Information Query provides information about the
following:

• Index and Table Information

• Index usage (benefits and costs information for each index)

• Index locks, blocks, wait time, and updates per read (cost versus
benefit)

You must execute the query in the Microsoft Dynamics NAV database on SQL
Server. It creates a table named z_IUQ2_Temp_Index_Keys and uses various
Microsoft Dynamic Management Views to collect information for each index for
this table. When you execute the complete query, it can take several minutes to
execute for each company in the database. If you just want to change sorting or
display the results again later, you only have to run the last part of the query as
follows.

Code Example

-- Select results

SELECT

[F_Table_Name] TableName,

[F_Row_Count] No_Of_Records,

[F_Data] Data_Size,

13 - 15 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

http://go.microsoft.com/fwlink/?LinkId=269777

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
[F_Index_Size] Index_Size,

[F_Index_Name] Index_Name,

[F_User_Updates] Index_Updates,

[F_User_Reads] Index_Reads,

CASE WHEN

F_User_Reads = 0 THEN F_User_Updates

ELSE

F_User_Updates / F_User_Reads

END AS Updates_Per_Read,

[F_Locks] Locks,

[F_Blocks] Blocks,

[F_Block_Wait_Time] Block_Wait_Time,

[F_Last_Used] Index_Last_Used,

[F_Index_Type] Index_Type,

[Index_Key_List] Index_Fields

FROM z_IUQ2_Temp_Index_Keys

--order by F_Row_Count desc, F_Table_Name, [F_Index_ID]

--order by F_User_Updates desc

--order by Blocks desc

--order by Block_Wait_Time desc

--order by Updates_Per_Read desc

ORDER BY F_Table_Name

The last lines suggest various other ORDER BY clauses that you can use to replace
the default ORDER BY clause that is by Table Name. There are several other
columns that are available. You can easily change the query, for example ORDER
BY user updates, to see the indexes that are causing the largest overheads, and
then check the actual usage of these indexes.

13 - 16 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
Code Example

--order by F_Row_Count desc, F_Table_Name, [F_Index_ID]

--order by F_User_Updates desc

--order by Blocks desc

--order by Block_Wait_Time desc

--order by Updates_Per_Read desc

ORDER BY F_Table_Name

To analyze query results, it is important to understand that the Index Information
Query uses SQL Server Dynamic Management Views to collect index information.
Some of these Dynamic Management Views access their information from the SQL
Server cache. The cache is located in the RAM memory of the server. If you
recently restarted SQL Server, then enough time may not have elapsed to warm
up the cache. This means that the cache is not representing the actual workload
on the server. Therefore, the results of the Index Information Query are
misleading. To avoid this scenario, make sure that before you run the Index
Information Query, enough time has elapsed since the last restart of SQL Server.

When the query results contain NULL values for most of the indexes in the
database, it means that there is not enough information in the cache about the
index usage. To obtain solid results, wait until a representative workload processes
in Microsoft Dynamics NAV.

The following is an example of the query results on a Microsoft Dynamics NAV
Demo Database.

FIGURE 13.3: RESULTS OF THE INDEX USAGE QUERY

13 - 17 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
The column on the left side shows data for the table (No. of records, data and
index size) where you can view the effect of indexes on the table.

The columns on the right side show data for each index. This includes Updates
(costs) and Reads (benefits), and when it was last used since the last time SQL
Server was restarted.

The following table describes the different columns of the Index Usage Query.

Field Name Description

TableName The name of the table.

No_Of_Records Number of records in the table.

Data_Size The current size of table data.

Index_Size The current size of the index.

Index_Name The name of the index.

Index_Updates The number of times the index was
updated by SQL Server.

Index_Reads The number of times the index was read by
SQL Server.

Updates_Per_Read The number of Updates divided by the
number of reads.

Locks The number of times the index was
involved in a lock.

Blocks The number of times the index was
involved in a block.

Block_Wait_Time The time that the index was blocked (in
ms).

Index_Last_Used The datetime the index was last used.

Index_Type The type of index (Clustered,
NonClustered.)

Index_Fields The fields of the index.

Define Keys to Improve Performance

When you write C/AL code that searches through a subset of the records in a
table, you must consider the keys that are defined for the table and then write
code that optimizes for the keys. For example, the entries for a specific customer
are usually a small subset of a table that contains entries for all customers.

13 - 18 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
The time that is required to complete a loop through a subset of records depends
on the size of the subset. If a subset cannot be located and read efficiently, then
performance deteriorates.

To maximize performance, you must define the keys in the table that support the
code that you run. Then you must specify these keys correctly in your code.

For example, to retrieve the entries for a specific customer, you apply a filter to
the Customer No. field in the Cust. Ledger Entry table. To run the code
efficiently on Microsoft SQL Server, you must define a key in the table that has
Customer No. as the first field.

The table could have the following keys:

• Entry No.

• Customer No.

• Posting Date

The following is an example of code that finds a subset of records.

Code Example

SETRANGE("Customer No.",'1000');

IF FIND('-') THEN

REPEAT

UNTIL NEXT = 0;

SQL Server automatically selects the index to use to retrieve data in the most
efficient way. SQL Server calculates the cost of retrieving data by using different
indexes. Then it selects the path that has the smallest cost. For Microsoft
Dynamics NAV, that calculation is based only on the statistical distribution of
values in a column.

For example, if a table contains 1000 rows and a column in the table contains
either the value 0 or the value 1, then that column is said to have a low selectivity.
If a column contains the values ranging from 1 to 500, then the column is said to
have a high selectivity. In the following code example, SQL Server selects an index
that contains the HighSelectivityColumn. Then it sorts the rows by the
LowSelectivityColumn.

13 - 19 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Code Example

SETCURRENTKEY("LowSelectivityColumn");

SETFILTER("LowSelectivityColumn",'1');

SETFILTER("HighSelectivityColumn",'777');

FIND('-')

Implicit/Explicit Locking

There are additional considerations to make when you work with Microsoft
Dynamics NAV on SQL Server. Microsoft Dynamics NAV is designed to read
without locks, and it locks only if it is necessary. If records will be changed,
indicate that intent (use explicit locking) so that the data is read correctly.

Implicit Locking

The following table demonstrates implicit locking. The C/AL pseudo-code on the
left is mapped to the equivalent action on SQL Server.

Sample code Result

TableX.FIND(‘-’); SELECT * FROM TableX
 WITH (READUNCOMMITTED)

(the retrieved record time stamp = TS1)

TableX.Field1 := Value;

TableX.MODIFY; performs the update
UPDATE TableX
 SET Field1 = Value
 WHERE TimeStamp <= TS1

The call to TableX.MODIFY will implicitly lock the table from that point forward.
This means that any call to FIND made on the table after this point will have the
WITH(UPDLOCK) applied.

Because the record was read without locking the record, NAV guarantees data
consistency by automatically adding a check in the where clause on the
timestamp. This means that other users' changes are not overwritten.

13 - 20 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
Explicit Locking

If users indicate that they plan to modify the record by using explicit locking, then
the SQL sent is slightly different, as shown by the following pseudo code.

Sample code Result

TableX.LOCKTABLE; Indicates to explicit lock.

TableX.FIND(‘-’); SELECT * FROM TableX
 WITH (UPDLOCK)

 (the retrieved record timestamp = TS1)

TableX.Field1 :=
Value;

TableX.MODIFY; UPDATE TableX
 SET Field1 = Value
 (The retrieved record timestamp is guaranteed to
be TS1.)

Problems with NEXT

Sometimes, the NEXT command causes performance problems in Microsoft
Dynamics NAV. Users should pay particular attention and avoid these situations.
The problem is if users change the content or the definition of the result-set, then
the set must be retrieved again. Microsoft Dynamics NAV guarantees that all
changes that are made by the current user are included in a result-set. This is
known as a dynamic result-set.

Be aware that if during traversal of a result-set any of following actions are
performed, then retrieval of the result-set will be reset (Issue a new SQL
statement):

• Changed filter

• Changed sorting

• Modified key value.

• Inserted a record.

• Modified, deleted, or inserted a record by using another instance of a
record.

• Changed transaction type.

13 - 21 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
The following code examples demonstrate this problem.

Code Result

SETCURRENTKEY(FieldA);

SETRANGE(FieldA,Value);

FIND(‘-‘) Set or part of the set is retrieved,
first record loaded.

REPEAT

 FieldA := NewValue; Record position is now outside the
set.

 MODIFY; Record is put outside the set.

UNTIL NEXT = 0; The system is asked to go to NEXT
from position, but from outside the
set.

"Jumping" through data - NEXT "from current record content

Code Result

SETCURRENTKEY(FieldA);

SETRANGE(FieldA,Value);

FIND(‘-’); Set based on filter on FieldA.

REPEAT

 …

 …

FieldA := <SomeValue> The current key value was changed.
So, the call to next has to retrieve the
record conforming with being
greater than <SomeValue>.

 …

UNTIL NEXT = 0 The system is asked go to NEXT from
undefined position.

13 - 22 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
FindFirst(only) followed by call to next

Code Result

SETRANGE(FieldA,Value);

FINDFIRST; This call is optimized for retrieving
the first record only. Therefore,
calling next after this issued a new
SQL query.

REPEAT

 …

UNTIL NEXT = 0; The system is asked to go to NEXT
on non-existing set.

SETRANGE(FieldA,Value);

Solutions

To eliminate performance problems with NEXT, consider the following solutions:

• Use a separate looping variable.

• Read records to temporary tables, modify within, and write back
afterwards.

Suboptimum Coding and Other Performance Penalties

Taking performance into consideration frequently influences programming
decisions. For example, if users do not use explicit locking, or if the program loops
and provokes problems with NEXT, they frequently pay a big price in
performance. Users also have to review their code and see how many times the
code reads the same table, or use ISEMPTY or COUNT for checking if there is a
record (IF COUNT = 0, IF COUNT = 1. Additionally, there are features in the
application that must be avoided or minimized. Users should review the
application setup for the performance aspect and take corrective actions if they
can.

13 - 23 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

Data Access Redesign
The SQL Server interface from Microsoft Dynamics NAV Server was rewritten for
Microsoft Dynamics NAV 2013 to use ADO.NET instead of ODBC.

Simplified Deployment

The new ADO.NET interface is a managed data access layer that supports SQL
Server connection pooling. This can significantly decrease memory consumption
by Microsoft Dynamics NAV Server. SQL Server connection pooling also simplifies
deployment of the Microsoft Dynamics NAV three-tier architecture for
deployments where the three tiers are installed on separate computers.
Specifically, administrators are no longer required to manually create SPNs or to
set up delegation when the client, Microsoft Dynamics NAV Server, and SQL
Server are on separate computers.

Decreased Resource Consumption

There is no longer a one-to-one correlation between the number of client
connections and the number of SQL Server connections. In earlier versions of
Microsoft Dynamics NAV, each SQL Server connection could consume up to 40
MB of memory. Memory allocation is now in managed memory. This is generally
more efficient than unmanaged memory.

In Microsoft Dynamics NAV 2013, all users who are connected to the same
Microsoft Dynamics NAV Server instance share the data cache. This means that
after one user has read a record, a second user who reads the same record
retrieves it from the cache. In earlier versions of Microsoft Dynamics NAV, the data
cache was isolated for each user.

Caching

Microsoft Dynamics NAV 2013 uses an improved cache system. The following
functions use the cache system:

• GET

• FIND

• FINDFIRST

• FINDLAST

• FINDSET

• COUNT

• ISEMPTY

• CALCFIELDS

• CALCSUMS

13 - 24 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
There are two types of caches:

• Global cache – For all users who are connected to a Microsoft
Dynamics NAV Server instance.

• Private cache – For each user, for each company, in a transactional
scope. Data in a private cache for a given table and company are
flushed when a transaction ends.

The lock state of a table determines the cache to use. If a table is not locked, then
the global cache is queried for data. Otherwise, the private cache is queried.

Results from query objects are not cached.

For a call to any of the FIND functions, 1024 rows are cached. You can set the size
of the cache by using the Data Cache Size setting in the Microsoft Dynamics NAV
Server configuration file. The default size is 9. This approximates a cache size of
500 MB. If you increase this number by one, then the cache size doubles.

You can bypass the cache by using the SELECTLATESTVERSION Function.

Microsoft Dynamics NAV 2013 synchronizes caching between Microsoft Dynamics
NAV Server instances that are connected to the same database. By default,
synchronization occurs every 30 seconds.

You can set the cache synchronization interval by using the
CacheSynchronizationPeriod parameter in the CustomSettings.config file.

Improved Performance

Microsoft Dynamics NAV 2013 no longer uses server cursors to retrieve records.
Instead, you retrieve records by using multiple active result sets (MARS). Functions
such as Next, Find('-'), Find('+'), Find('>'), and Find('<') are generally faster
with MARS.

 Note: Because Microsoft Dynamics NAV 2013 no longer uses server cursors
to retrieve records, the Record Set property under Caching on the Advanced tab of
the Alter Database page was no longer needed and was removed.

SIFT indexes also are improved. For example, COUNT and AVERAGE formulas can
now use SIFT indexes. MIN and MAX formulas now use SQL Server MIN and MAX
functions exclusively.

RecordId’s and SQL Variant columns in a table no longer prevent use of BULK
insert inserts.

13 - 25 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
In most cases, filtering on FlowFields issues a single SQL statement. In earlier
versions of Microsoft Dynamics NAV, filtering on FlowFields issued an SQL
statement for each filtered FlowField and for each record in the table to calculate
the filtered FlowFields. The following exceptions are in Microsoft Dynamics NAV
2013 in which filtering on FlowFields does not issue a single SQL statement:

• You use the ValueIsFilter option on a field and the field has a value.

• A second predicate is specified on a source field and the field that is
used for the second predicate has a value. For example, when you
specify the CalcFormula Property for a FlowField, you can specify
table filters in the Calculation Formula window. If you specify two or
more filters on the same source field, then filtering does not issue a
single SQL statement.

• You specify Validated for the SecurityFiltering Property on a record.
This value for the SecurityFiltering property means that each record
that is part of the calculation must be verified for inclusion in the
security filter.

In most cases, calling the FIND or NEXT functions after you set the view to
include only marked records issues a single SQL statement. In earlier versions of
Microsoft Dynamics NAV, calling FIND or NEXT functions that have marked
records issued an SQL statement for each mark. There are some exceptions if
many records are marked.

C/AL Database Functions and Performance on SQL
Server

GET, FIND, and NEXT

The C/AL language offers several methods to retrieve record data. Each of the
following functions is optimized for a specific purpose. To achieve optimal
performance you must use the method that is best suited for a given purpose.

• Record.GET – This function is optimized for retrieving a single record
based on primary key values.

• Record.FIND – The FIND function is optimized for retrieving a single
record based on the primary keys in the record and any filter or range
that was set.

• Record.FIND('-') and Record.FIND('+') – These functions are
optimized for reading an open-end dataset when the application
might not read all records.

• Record.FINDSET(ForUpdate, UpdateKey) – The FINDSET function
is optimized for reading the whole set of records within the specified
filter and range. The UpdateKey parameter does not influence the
efficiency of this method in Microsoft Dynamics NAV 2013.

13 - 26 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
• Record.FINDFIRST and Record.FINDLAST – The FINDFIRST and

FINDLAST functions are optimized for finding the single first or last
record within the specified filter and range. Use these functions when
you only require one record.

• Record.FINDFIRST and Record.FINDLAST – The FINDFIRST and
FINDLAST functions are optimized for finding the single first or last
record within the specified filter and range. Use these functions when
you only require one record.

• Record.FINDFIRST and Record.FINDLAST – The FINDFIRST and
FINDLAST functions are optimized for finding the single first or last
record within the specified filter and range. Use these functions when
you only require one record.

• Record.FINDFIRST and Record.FINDLAST – The FINDFIRST and
FINDLAST functions are optimized for finding the single first or last
record within the specified filter and range. Use these functions when
you only require one record.

• Record.NEXT – The NEXT function can be called at any time.
However, if Record.NEXT is not called as part of retrieving a
continuous result set, then Microsoft Dynamics NAV calls a separate
SQL statement in order to find the next record.

Dynamic Result Sets

In Microsoft Dynamics NAV any result set that is returned from a call to the find
methods discussed in the previous section is dynamic. This means that the result
set is guaranteed to contain any changes that you make later in the result set.
However this feature comes at a cost. If any modifications are made to a table that
is being traversed, then Microsoft Dynamics NAV might have to issue an
additional SQL statement to guarantee that the result set is dynamic.

The following code shows how records are most efficiently retrieved. FINDSET is
the most efficient method to use because it reads all records.

Code Example

IF FINDSET THEN

REPEAT

 // Insert statements to repeat.

UNTIL NEXT = 0;

13 - 27 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
CALCFIELDS, CALCSUMS, and COUNT Functions

Each call to CALCFIELDS, CALCFIELD, CALCSUMS, or CALCSUM functions that
calculates a sum requires a separate SQL statement. This is true unless the client
calculated the same sum or another sum that uses the same SumIndexFields or
filters in a recent operation.

Each CALCFIELDS or CALCSUMS function request should be confined to use only
one SIFT index. You can use the SIFT index only as follows:

• All requested sum-fields are contained in the same SIFT index.

• The filtered fields are part of the key fields that are specified in the
SIFT index that contains all the sum fields.

If neither of these requirements is fulfilled, then the sum is calculated directly from
the base table.

In Microsoft Dynamics NAV 2013, use SIFT indexes to count records in a filter, as
long as a SIFT index exists that contains all filtered fields in the key fields that are
defined for the SIFT index.

SETAUTOCALCFIELDS

It is a common task to retrieve data and request calculation of associated
FlowFields. The following example traverses customer records, calculates the
balance, and marks the customer as blocked if the customer exceeds the
maximum credit limit.

Code Example

IF Customer.FINDSET() THEN REPEAT

 Customer.CALCFIELDSS(Customer.Balance)

 IF (Customer.Balance > MaxCreditLimit) THEN BEGIN

 Customer.Blocked = True;

 Customer.MODIFY();

 END

 ELSE IF (Customer.Balance > LargeCredit) THEN BEGIN

 Customer.Caution = True;

 Customer.MODIFY();

13 - 28 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
 END;

UNTIL Customer.NEXT = 0;

In Microsoft Dynamics NAV 2013, you can do this much faster. First, set a filter on
the customer. You can also do this in Microsoft Dynamics NAV 2009, but behind
the scenes the same code is executed. In Microsoft Dynamics NAV 2013, setting a
filter on a record translates into a single SQL statement.

Code Example

Customer.SETFILTER(Customer.Balance,’>%1’, LargeCredit);

IF Customer.FINDSET() THEN REPEAT

 Customer.CALCFIELDS(Customer.Balance)

 IF (Customer.Balance > MaxCreditLimit) THEN BEGIN

 Customer.Blocked = True;

 Customer.MODIFY();

 END

 ELSE IF (Customer.Balance > LargeCredit) THEN BEGIN

 Customer.Caution = True;

 Customer.MODIFY();

 END;

UNTIL Customer.NEXT = 0;

In the previous example, an additional call to the CALCFIELDS function still must
be issued for the code to check the value of Customer.Balance. You can optimize
this more by using the new SETAUTOCALCFIELDS function.

Code Example

Customer.SETFILTER(Customer.Balance,’>%1’, LargeCredit);

Customer.SETAUTOCALCFIELDS(Customer.Balance)

IF Customer.FINDSET() THEN REPEAT

 IF (Customer.Balance > MaxCreditLimit) THEN BEGIN

13 - 29 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
 Customer.Blocked = True;

 Customer.MODIFY();

 END

 ELSE IF (Customer.Balance > LargeCredit) THEN BEGIN

 Customer.Caution = True;

 Customer.MODIFY();

 END;

UNTIL Customer.NEXT = 0;

INSERT, MODIFY, DELETE, and LOCKTABLE

Each call to INSERT, MODIFY, or DELETE functions requires a separate SQL
statement. If the table that you modify contains SumIndexes, then the operations
are significantly slower. As a test, select a table that contains SumIndexes and
execute one hundred INSERT, MODIFY, or DELETE operations to measure how
long it takes to maintain the table and all its SumIndexes.

The LOCKTABLE function does not require any separate SQL statements. It only
causes any successive reading from the table to lock the table or parts of it.

Bulk Inserts
Microsoft Dynamics NAV automatically buffers inserts to send them to Microsoft
SQL Server at one time.

By using bulk inserts, the number of server calls is reduced. This improves
performance.

Bulk inserts also improve scalability by delaying the actual insert until the last
possible moment in the transaction. This reduces the time that tables are locked,
especially tables that contain SIFT indexes.

Software developers who want to write high performance code that uses this
feature should understand the following bulk insert constraints.

Bulk Insert Constraints

If you want to write code that uses the bulk insert functionality, you must be
aware of the following constraints.

13 - 30 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
Records are sent to SQL Server when the following occurs:

• You call COMMIT to commit the transaction.

• You call MODIFY or DELETE on the table.

• You call any FIND or CALC methods on the table.

• Records are not buffered if one of the following conditions is TRUE:

• The application is using the return value from an INSERT call, for
example, "IF (GLEntry.INSERT) THEN".

o The table that you insert the records into contains any of the
following:

 BLOB fields

 Fields that have the AutoIncrement property set to Yes

The following code example cannot use buffered inserts because it contains a
FIND call on the GL/Entry table within the loop.

Code Example

IF (JnlLine.FIND('-')) THEN BEGIN

 GLEntry.LOCKTABLE;

 REPEAT

 IF (GLEntry.FINDLAST) THEN

 GLEntry.NEXT := GLEntry."Entry No." + 1

 ELSE

 GLEntry.NEXT := 1;

 // The FIND call will flush the buffered records.

 GLEntry."Entry No." := GLEntry.NEXT ;

 GLEntry.INSERT;

 UNTIL (JnlLine.FIND('>') = 0)

END;

COMMIT;

If you rewrite the code as shown in the following example, you can use buffered
inserts.

13 - 31 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Code Example

IF (JnlLine.FIND('-')) THEN BEGIN

 GLEntry.LOCKTABLE;

 IF (GLEntry.FINDLAST) THEN

 GLEntry.Next := GLEntry."Entry No." + 1

 ELSE

 GLEntry.Next := 1;

 REPEAT

 GLEntry."Entry No.":= GLEntry.Next;

 GLEntry.Next := GLEntry."Entry No." + 1;

 GLEntry.INSERT;

 UNTIL (JnlLine.FIND('>') = 0)

END;

COMMIT;

// The inserts are performed here.

Locking, Blocking, and Deadlocks
When data is read from the database, Microsoft Dynamics NAV uses the
READUNCOMMITTED isolation level. This means that any user can modify the
records that are currently being read, until the table is either changed by a write
operation, or locked with the Record.LOCKTABLE function. From this point until
the end of the transaction, all read operations on the table are performed with
both REPEATABLE READ and UPDLOCK locking. This is frequently known as
pessimistic concurrency.

Locking

Records can be read with different types of locks such as UPDLOCK. At this level,
records that are read are locked. This means that no other user can modify the
record.

13 - 32 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
An example of a lock of a customer record can be demonstrated by the following
code.

Code Example

Customer.LOCKTABLE;

Customer.GET('10000'); // Customer 10000 is locked

Customer.Blocked := Customer.Blocked::All;

Customer.MODIFY;

COMMIT; // Lock is removed

If the record is not locked, the following situation can occur:

User A User B Comment

Customer.GET('10000')
;

 User A reads record
without any lock.

 Customer.GET('10000')
;

User B reads same
record without any lock.

… Customer.Blocked :=
 Customer.Blocked::All
;
Customer.MODIFY;
COMMIT;

User B modifies record.

Customer.Blocked :=
 Customer.Blocked::””;
Customer.MODIFY;

 User A gets an error:
“Another user has
modified the record...”.

ERROR SUCCESS

Blocking

When other users try to lock data that is currently locked, they are blocked and
have to wait. If they wait longer than the defined time out, they receive the
following Microsoft Dynamics NAV error: "The XYZ table cannot be locked or
changed because it is already locked by the user."

13 - 33 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
 If it is necessary, change the default time-out by selecting File > Database>
Alter. On the Advanced tab, select Lock Timeout and Timeout duration (sec)
value.

Refer to the previous example, where two users try to modify the same record.
The data that will be changed can be locked. This prevents other users from doing
the same. Following is an example.

User A User B Comment

Customer.LOCKTABLE;
Customer.GET('10000')
;

 User A reads record with
lock.

 Customer.LOCKTABLE;

Customer.GET('10000');

User B tries to read same
record with a lock.

… … blocked, waiting … User B waits and is
blocked, because the
record is locked by user
A.

Customer.Blocked :=
 Customer.Blocked::All
;
Customer.MODIFY;

… blocked, waiting … User A successfully
modifies record.

COMMIT; Lock is released.

 … Data is sent to user B.

 Customer.Blocked :=
 Customer.Blocked::””;
Customer.MODIFY;

User B successfully
modifies record.

 COMMIT; Lock is released.

SUCCESS SUCCESS

Deadlocks

There is a potential situation when blocking cannot be resolved by SQL server. The
situation arises when two or more users manage to lock data. Then it is blocked
when they try to lock data that is already locked by one of the other users. SQL
server resolves the issue by ending the transaction that has done the least amount
of work.

For example, consider a case in which two users are working at the same time and
try to retrieve one another’s blocked records, as shown in the following pseudo
code.

13 - 34 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
User A User B Comment

TableX.LOCKTABLE;
TableY.LOCKTABLE;

TableX.LOCKTABLE;
TableY.LOCKTABLE;

Indicates that the next read
will use UPDLOCK.

TableX.FINDFIRST; TableY.FINDFIRST; A blocks Record1 from
TableX. B blocks Record 1
from tableY.

… …

User A User B Comment

TableY.FINDFIRST; TableX.FINDFIRST; A wants B’s record, whereas
B wants A’s record. A
conflict occurs.

"Your activity was
deadlocked with
another user"

 SQL Server detects
deadlock and arbitrarily
selects one over the other.
Therefore, one will receive
an error.

ERROR SUCCESS

SQL Server supports record level locking. So, there may be a situation where these
two activities bypass one another without any problem, such as with this pseudo
code. Be aware that User A is retrieving the last record compared to the situation
that was discussed earlier.

User A User B Comment

TableX.LOCKTABLE;
TableY.LOCKTABLE;

TableX.LOCKTABLE;
TableY.LOCKTABLE;

Indicates that the next read
will use UPDLOCK.

TableX.FINDFIRST; TableY.FINDFIRST; A blocks Record1 from
TableX. B blocks Record 1
from tableY.

… …

TableY.FINDLAST; TableX.FINDLAST; No conflict, as no records
are in contention.

SUCCESS SUCCESS

Be aware that there would be a deadlock if one of the tables was empty, or
contained one record only. To add to this complexity, there may be a situation
where two processes read the same table from opposite directions and meet in
the middle, such as with the following pseudo code.

13 - 35 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
User A User B Comment

TableX.LOCKTABLE;
TableY.LOCKTABLE;

TableX.LOCKTABLE;
TableY.LOCKTABLE;

Indicates that the next read
will use UPDLOCK.

TableX.FIND(‘-’); TableY.FIND(‘+’); A reads from top of TableX.
B reads from bottom of
TableX.

User A User B Comment

REPEAT REPEAT

… …

UNTIL NEXT = 0; UNTIL NEXT(-1) = 0; …after some time… A wants
B’s record, whereas B wants
A’s record. A conflict occurs.

 "Your activity was
deadlocked with
another user"

SQL Server detects deadlock
and selects one of the users
for failure.

SUCCESS ERROR

There are also situations where a block on index update may produce the conflict,
and situations where updating SIFT tables can cause a deadlock. These situations
can be complex and difficult to avoid. However, the transaction that is selected to
fail is rolled back to the beginning, so there should be no major issue. However, if
the process is written with several partial commits, then there might be dirty data
in the database as a side-product of those deadlocks. That can become a major
issue for the customer.

Avoid Deadlocks

Many deadlocks could lead to major customer dissatisfaction, but deadlocks
cannot be avoided completely. To reduce the number of deadlocks, do the
following:

• Process tables in the same sequence.

• Process records in the same order.

• Keep the transaction length to a minimum.

13 - 36 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
If this is not possible because of the complexity of the processes, revert to
serializing the code by making sure that conflicting processes cannot execute in
parallel. The following code demonstrates how you can do this.

User A User B Comment

TableX.LOCKTABLE;
TableY.LOCKTABLE;
TableA.LOCKTABLE;

TableX.LOCKTABLE;
TableY.LOCKTABLE;
TableA.LOCKTABLE;

Indicates that the next read will
use UPDLOCK.

TableA.FINDFIRST; … User A locks Record1 from
TableX.

User A User B Comment

 TableA.FINDFIRST; User B tries to lock Record1
from TableX.

… Blocked User B is blocked.

TableY.FINDFIRST;
TableX.FINDFIRST;

Blocked User A processes tables in
opposite order.

COMMIT; Block is released.

 OK on read table A

 TableX.FINDFIRST;

TableY.FINDFIRST;

User B processes tables in
opposite order.

 COMMIT;

SUCCESS SUCCESS

By serializing the transactions, you may experience a greater probability of
timeouts. Therefore, keeping the length of transactions short becomes even more
important. This also demonstrates that you can combine the various principles
and methods, depending on the situation and complexity; one method may work
for one customer while the other method works for another customer.

We also recommend that you consider following these golden rules:

• Test conditions of data validity before the start of locking.

• Allow for some time gap between heavy processes so that other users
can process.

• Never allow for user input during an opened transaction.

13 - 37 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
If the transaction is too complex or if there is limited time, consider discussing the
possibility of over-night processing of heavy jobs with the customer. This avoids
the daily concurrency complexity and avoids the high costs of rewriting the code.

 Best Practice: In order to minimize the possibility of deadlocks (or blocks)
occurring, focus first on increasing the performance of the transactions. The longer
it takes for a transaction to complete, the greater the possibility for a deadlock to
occur. By increasing the performance, you reduce the possibility of deadlocks
occurring. Increasing performance is achieved by analyzing index usage. Make sure
that indexes that are not used are not maintained. Make sure that indexes that
improve the performance are available for SQL Server to use and make sure that
the available indexes are optimized.

SIFT Data Storage in SQL Server
Use SIFT tables in Microsoft Dynamics NAV version 5.0 and older, to implement
SIFT on SQL Server, and to store aggregate values for SumIdexFields for keys in
the source tables. Starting with version 5.0 Service Pack 1, indexed views replace
these SIFT tables. SIFT tables are no longer part of Microsoft Dynamics NAV. This
section is preserved because developers who work with Microsoft Dynamics NAV
are likely to encounter issues about SIFT tables in implementations of older
versions of Microsoft Dynamics NAV. You must have a good understanding of
how they work.

A SumIndexField is always associated with a key, and each key can have no more
than 20 SumIndexFields associated with it. When the MaintainSIFTIndex property
of a key is set to Yes, Microsoft Dynamics NAV regards this key as a SIFT key and
creates the SIFT structures that are needed to support it.

You can associate any field of the Decimal data type with a key as a
SumIndexField. Microsoft Dynamics NAV then creates and maintains a structure
that stores the calculated totals that are required for the fast calculation of
aggregated totals.

In the SQL Server Option for Microsoft Dynamics NAV, this maintained structure is
a typical table, but is called a SIFT table. These SIFT tables exist on SQL Server, but
are not visible in the table designer in C/SIDE. As soon as you create the first SIFT
table for a base table, a dedicated SQL Server trigger is also created and then is
maintained automatically by Microsoft Dynamics NAV. This is known as a SIFT
trigger. A base table is also a standard Microsoft Dynamics NAV table, instead of
an additional SQL Server table that is created to support Microsoft Dynamics NAV
functionality.

13 - 38 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
One SIFT trigger is created for each base table that contains SumIndexFields. This
dedicated SQL Server trigger supports all the SIFT tables that you create to
support this base table. The SIFT trigger implements all modifications that are
made on the base table when a SIFT table is affected. This means that the SIFT
trigger automatically updates the information in all existing SIFT tables after every
modification of the records in the base table.

The name of the SIFT trigger has the following format: <base Table Name>_TG.
For example, the SIFT trigger for table 17, G/L Entry is named CRONUS
International Ltd_$G/L Entry_TG. Regardless of the number of SIFT keys that are
defined for a base table, only one SIFT trigger is created.

You create a SIFT table for every base table key that has at least one
SumIndexField associated with it. Regardless of how many SumIndexFields are
associated with a key, you can create only one SIFT table for that key.

The name of the SIFT table has the following format: <Company Name>$<base
Table ID>$<Key Index>. For example, one of the SIFT tables that were created for
table 17, G/L Entry is named CRONUS International Ltd_$17$0.

The column layout of the SIFT tables is based on the layout of the SIFT key
together with the SumIndexFields that are associated with this SIFT key. But the
first column in every SIFT table is always named bucket, and it contains the value
of the bucket or the SIFT level for the precalculated sums that are stored in the
table. To view the structure, examine the SIFTLevels property for a key in Microsoft
Dynamics NAV.

After the bucket column is a set of columns with names that begin with the letter
f. These are also known as f- or key-columns. Each of these columns represents
one field of the SIFT key.

The name of these columns has the format, f<Field No.>, where Field No. is the
integer value of the Field No. property of the represented SIFT key field. For
example, column f3 in CRONUS International Ltd_$17$0 represents the G/L
Account No. field (it is field number three in the base table G/L Entry).

Finally, there is a group of columns with names that begin with the letter s
followed by numbers. These are known as s-columns. These columns represent
every SumIndexField that is associated with the SIFT key.

The name of these columns has the format, s<Field No.>. Field No. is the integer
value of the Field No. property of the represented SumIndexField. The
precalculated totals of values for the corresponding SumIndexFields are stored in
these fields of the SIFT table.

SIFT tables are one of the biggest Microsoft Dynamics NAV performance
problems on SQL Server. One record update in the base table produces a
potentially large stream of Input/Output (I/O) requests with updates to the
records in the SIFT tables. This could possibly block other users during that time.

13 - 39 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

SQL Server Profiler
Microsoft SQL Profiler is a graphical user interface to SQL Trace for monitoring an
instance of the Database Engine. You can capture and save data about each event
to a file or table to analyze later. For example, you can monitor a production
environment to see which queries are affecting performance by executing too
slowly.

SQL Server Profiler

SQL Server Profiler can be used to monitor events that occur on SQL Server. It can
be used to do the following tasks:

• Create a trace that is based on a reusable template.

• Watch the trace results as the trace runs.

• Store the trace results in a table.

• Start, stop, pause, and modify the trace results as necessary.

• Replay the trace results.

SQL Profiler then can analyze or use the trace file to troubleshoot logic or
performance problems. You can use this utility to monitor several areas of server
activity, such as the following:

• Analyzing and debugging SQL statements and stored procedures

• Monitoring slow performance

• Stress analysis

• General debugging and troubleshooting

• Fine-tuning indexes

• Auditing and reviewing security activity

To summarize, you create a template or use an existing template that defines the
data that you want to collect. Then you collect the data by running a trace on the
events that you defined in your template. During the run, Profiler displays the
event classes and data columns that describe the event data that is being
collected.

13 - 40 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
SQL Server Profiler Terminology

Template

A template defines the default configuration for a trace. Templates can be saved,
imported, and exported between SQL Server instances. Templates from one SQL
Server version cannot be imported to a different SQL Server version. SQL Server
includes the following ten predefined templates:

• Event – An event is an action that is generated by the SQL Server
engine, such as a logon connection or the execution of a Transact-
SQL statement. Events are grouped by event categories. All the data
that is generated by an event is displayed in the trace. This contains
columns of data that describe the event in detail.

• Trace – The trace does the actual data capture, based on the events
that you defined in the template.

• Event Class – An event class can be defined as a type of event that
can be traced. Examples of event classes are SP:Starting and
RPC:Completed.

• Event Category – Groups of events are called an event category.
Examples of event categories are Stored Procedure and Locks. There
can be multiple event categories that can be selected for a single
trace.

• Data Column – Data column is an attribute of an event class that is
captured in the trace. A data column contains values of an event class.

• Filter – Filters are used to create selectivity in data that are collected
in trace. By default, SQL Profiler monitors all events on SQL Server.
You can apply a filter to only monitor events in the Microsoft
Dynamics NAV database.

Use SQL Server Profiler

SQL Profiler is a component of client tools that can be installed independently
from the SQL Server Database Engine. It is mandatory for the user to have system
admin rights to start the profiler. You can start SQL Profiler by using the following
methods:

• Start SQL Profiler – SQL Profiler is available from the Microsoft
Windows Start menu or SQL Server Enterprise Manager. Use either of
the following methods to start Profiler:

• Click Start, locate Microsoft SQL Server among your available
programs, and then click Profiler on the Performance Tools group.

13 - 41 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

FIGURE 13.4: START SQL SERVER PROFILER FROM START MENU
• In Enterprise Manager, select SQL Profiler on the Tools menu.

FIGURE 13.5: START SQL SERVER PROFILER FROM SQL SERVER
MANAGEMENT STUDIO

• Collect Data – Select Menu > File > New Trace to create a new
trace. A window opens to connect it to a database. The database can
be a local database or a database that is available on the network,
such as a production server. In the following example a connection is
made to a SQL Instance that is named SQL2008R2EXPRESS on the
server NAV7DEMO.

13 - 42 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization

FIGURE 13.6: CONNECT TO SERVER WINDOW

 Note: NoteBe aware that you must be a member of the SYSADMIN fixed
server role to be able to setup traces with Profiler.

The Trace Properties window opens after the connection to SQL Server is made.
Here you can enter the trace name. Notice that trace provider name, type, and
versions are prepopulated and you cannot alter them. These are set based on the
instance of SQL Server with which you are connected.

FIGURE 13.7: TRACE PROPERTIES GENERAL WINDOW

13 - 43 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
The Trace Properties window contains a drop-down for template selection. This
is named Use the template. The selected default template is standard. To view
the events that are included in the Standard template, select the Events
Selection tab.

FIGURE 13.8: TRACE PROPERTIES EVENTS SELECTION

The Event selection window contains check boxes that can be configured,
depending on the requirements of the data that you want to collect. There is also
a Column Filters button that you can click to further filter trace data.

The Trace Properties window contains a Run button to start the trace. The trace
can be paused or stopped as required by using the Play menu.

13 - 44 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization

FIGURE 13.9: A RUNNING TRACE

 Additional Reading: More information about SQL Profiler is available on the
MSDN website that is located at: http://go.microsoft.com/fwlink/?LinkId=269809.

13 - 45 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

http://go.microsoft.com/fwlink/?LinkId=269809

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

Lab 13.1: Analyze Index Usage
Scenario

Mort is asked to analyze the indexes of the Cronus database. To optimize the
performance of certain processes, he must make sure that indexes that are not
used by SQL Server are disabled to minimize overhead. To perform this analysis,
Mort executes a query. This query displays a list of all tables and indexes in an SQL
database to help identify the tables in which most blocks occur. This gives a
starting point for index tuning.

Objectives

Identify indexes that might cause overhead on SQL Server.

Exercise 1: Use the Index Information Query to identify
and disable unused indexes.

Task 1: Execute the Index Information Query

High Level Steps
1. Open SQL Server Management Studio.
2. Execute the Query.
3. Run the Index Information Query.

4. Analyze the Query Results.

Detailed Steps
1. Open SQL Server Management Studio.

a. To open Microsoft SQL Server Management Studio select: Start >
All Programs > Microsoft SQL Server 2012 > SQL Server
Management Studio on the main Toolbar. The Connect to SQL
Server window opens.

b. Select Connect to connect to SQL Server.
c. To open a new Query window, select the New Query button (or

Ctrl+N). It can be found at the top of the screen, below the menu.

2. Execute the Query.
a. Type the following Query in the Query window.

Code Example

use [Demo Database NAV (7-0)]

IF OBJECT_ID ('z_IUQ2_Temp_Index_Keys', 'U') IS NOT NULL

13 - 46 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
DROP TABLE z_IUQ2_Temp_Index_Keys;

-- Generate list of indexes with key list

create table z_IUQ2_Temp_Index_Keys

([l1] [bigint] NOT NULL,

[F_Obj_ID] [bigint] NOT NULL,

[F_Schema_Name] [nvarchar] (128) NULL,

[F_Table_Name] [nvarchar] (128) NOT NULL,

[F_Row_Count] [bigint] NULL,

[F_Reserved] [bigint] NULL,

[F_Data] [bigint] NULL,

[F_Index_Size] [bigint] NULL,

[F_UnUsed] [bigint] NULL,

[F_Index_Name] [nvarchar] (128) NULL,

[F_Index_ID] [bigint] NOT NULL,

[F_Column_Name] [nvarchar] (128) NULL,

[F_User_Updates] [bigint] NULL,

[F_User_Reads] [bigint] NULL,

[F_Locks] [bigint] NULL,

[F_Blocks] [bigint] NULL,

[F_Block_Wait_Time] [bigint] NULL,

[F_Last_Used] [datetime] NULL,

[F_Index_Type] [nvarchar] (128) NOT NULL,

[F_Index_Column_ID] [bigint] NOT NULL,

[F_Last_Seek] [datetime] NULL,

[F_Last_Scan] [datetime] NULL,

13 - 47 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
[F_Last_Lookup] [datetime] NULL,

[Index_Key_List] [nvarchar] (MAX) NULL

)

GO

CREATE NONCLUSTERED INDEX [Object_ID_Index] ON [dbo].

[z_IUQ2_Temp_Index_Keys]

(

[F_Obj_ID]

ASC

)

GO

CREATE NONCLUSTERED INDEX [Index_ID_Index] ON [dbo].

[z_IUQ2_Temp_Index_Keys]

(

[F_Index_ID]

ASC

)

GO

CREATE NONCLUSTERED INDEX [RowCount_ID_Index] ON [dbo].

[z_IUQ2_Temp_Index_Keys]

(

[F_Row_Count]

ASC

)

GO

13 - 48 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
INSERT INTO z_IUQ2_Temp_Index_Keys

SELECT

(

row_number() over(order by a3.name, a2.name))%2 as l1,

a1.object_id,

a3.name AS [schemaname],

a2.name AS [tablename],

a1.rows as row_count,

(

a1.reserved + ISNULL(a4.reserved,0))* 8 AS reserved,

a1.data * 8 AS data,

(

CASE WHEN (a1.used + ISNULL(a4.used,0)) > a1.data THEN (a1.used +
ISNULL(a4.used,0)) - a1.data ELSE 0 END) * 8 AS index_size,

(

CASE WHEN (a1.reserved + ISNULL(a4.reserved,0)) > a1.used THEN (a1.reserved +
ISNULL(a4.reserved,0)) - a1.used ELSE 0 END) * 8 AS unused,

-- Index Description

SI.name,

SI.Index_ID,

index_col(object_name(SIC.object_id),SIC.index_id,SIC.Index_Column_ID),

-- Index Stats

US.user_updates,

US.user_seeks + US.user_scans + US.user_lookups User_Reads,

-- Index blocks

IStats.row_lock_count + IStats.page_lock_count,

13 - 49 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
IStats.row_lock_wait_count + IStats.page_lock_wait_count,

IStats.row_lock_wait_in_ms + IStats.page_lock_wait_in_ms,

-- Dates

CASE

WHEN

 (ISNULL(US.last_user_seek,'00:00:00.000') >=
ISNULL(US.last_user_scan,'00:00:00.000')) and

 (ISNULL(US.last_user_seek,'00:00:00.000') >=
ISNULL(US.last_user_lookup,'00:00:00.000'))

THEN

 US.last_user_seek

WHEN

 (ISNULL(US.last_user_scan,'00:00:00.000') >=
ISNULL(US.last_user_seek,'00:00:00.000')) and

 (ISNULL(US.last_user_scan,'00:00:00.000') >=
ISNULL(US.last_user_lookup,'00:00:00.000'))

THEN

 US.last_user_scan

ELSE

 US.last_user_lookup

END AS Last_Used_For_Reads,

SI.type_desc,

SIC.index_column_id,

US.last_user_seek,

US.last_user_scan,

US.last_user_lookup,

''

13 - 50 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
FROM

(

SELECT

ps.object_id,

SUM

(

CASE

WHEN

 (ps.index_id < 2)

THEN

 row_count

ELSE

 0

END

)

AS [rows],

SUM(ps.reserved_page_count) AS reserved,

SUM

(

CASE

WHEN

 (ps.index_id < 2)

THEN

 (ps.in_row_data_page_count + ps.lob_used_page_count +
ps.row_overflow_used_page_count)

ELSE

13 - 51 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
 (ps.lob_used_page_count + ps.row_overflow_used_page_count)

END

)

AS data,

SUM (ps.used_page_count) AS used

FROM

sys.dm_db_partition_stats ps

GROUP BY ps.object_id) AS a1

LEFT OUTER JOIN

(

SELECT

it.parent_id,

SUM (ps.reserved_page_count) AS reserved,

SUM (ps.used_page_count) AS used

FROM sys.dm_db_partition_stats ps

INNER JOIN sys.internal_tables it ON (it.object_id = ps.object_id)

WHERE it.internal_type IN (202,204)

GROUP BY it.parent_id) AS a4 ON (a4.parent_id = a1.object_id)

INNER JOIN sys.all_objects a2 ON (a1.object_id = a2.object_id)

INNER JOIN sys.schemas a3 ON (a2.schema_id = a3.schema_id)

INNER JOIN sys.indexes SI ON (SI.object_id = a1."object_id")

INNER JOIN sys.index_columns SIC ON (SIC.object_id = SI.object_id and
SIC.index_id = SI.index_id)

LEFT OUTER JOIN sys.dm_db_index_usage_stats US ON (US.object_id = SI.object_id
and US.index_id = SI.index_id and US.database_id = db_id())

LEFT OUTER JOIN sys.dm_db_index_operational_stats(NULL,NULL,NULL,NULL)
IStats ON (IStats.object_id = SI.object_id and IStats.index_id = SI.index_id and

13 - 52 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
IStats.database_id = db_id())

WHERE a2.type <> N'S' and a2.type <> N'IT'

ORDER BY row_count DESC

GO

-- Populate key string

DECLARE IndexCursor CURSOR FOR SELECT

F_Obj_ID,

F_Index_ID

FROM

z_IUQ2_Temp_Index_Keys

FOR UPDATE OF

Index_Key_List

DECLARE @objID int

DECLARE @IndID int

DECLARE @KeyString VARCHAR(MAX)

SET @KeyString = NULL

OPEN IndexCursor

SET NOCOUNT ON

FETCH NEXT FROM IndexCursor INTO @ObjID, @IndID

WHILE @@fetch_status = 0 BEGIN

 SET @KeyString = ''

 SELECT @KeyString = COALESCE(@KeyString,'') + F_Column_Name + ', '

 FROM z_IUQ2_Temp_Index_Keys

 WHERE F_Obj_ID = @ObjID and F_Index_ID = @IndID

 ORDER BY F_Index_ID, F_Index_Column_ID

13 - 53 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
 SET @KeyString = LEFT(@KeyString,LEN(@KeyString) -2)

 UPDATE z_IUQ2_Temp_Index_Keys

 SET Index_Key_List = @KeyString

 WHERE CURRENT OF IndexCursor

 FETCH NEXT FROM IndexCursor INTO @ObjID, @IndID

END;

CLOSE IndexCursor

DEALLOCATE IndexCursor

GO

-- clean up table to one line per index

DELETE FROM z_IUQ2_Temp_Index_Keys

WHERE [F_Index_Column_ID] > 1

GO

-- Select results

SELECT

[F_Table_Name] TableName,

[F_Row_Count] No_Of_Records,

[F_Data] Data_Size,

[F_Index_Size] Index_Size,

[F_Index_Name] Index_Name,

[F_User_Updates] Index_Updates,

[F_User_Reads] Index_Reads,

CASE WHEN

F_User_Reads = 0 THEN F_User_Updates

ELSE

13 - 54 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
F_User_Updates / F_User_Reads

END AS Updates_Per_Read,

[F_Locks] Locks,

[F_Blocks] Blocks,

[F_Block_Wait_Time] Block_Wait_Time,

[F_Last_Used] Index_Last_Used,

[F_Index_Type] Index_Type,

[Index_Key_List] Index_Fields

FROM z_IUQ2_Temp_Index_Keys

--order by F_Row_Count desc, F_Table_Name, [F_Index_ID]

--order by F_User_Updates desc

--order by Blocks desc

--order by Block_Wait_Time desc

order by Updates_Per_Read desc

--ORDER BY F_Table_Name

b. As an alternative you can copy/paste the query into the Query
Designer from the file IndexUsageQuery.sql.

3. Run the Index Information Query.
a. Select Query, and then Execute to run the query.

4. Analyze the Query Results.

In this exercise we presume the results are valid and representative for
the workload in Microsoft Dynamics NAV.

a. In the Query Results the following might be an example of an
index that is unused, and that is causing overhead during write
statements:

i. Table Name: CRONUS International Ltd_$Sales Header
ii. Index Name: $4

iii. Index Updates: 1246

13 - 55 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

 Note: This number might be different, because it depends on how the
database was used. It will be different almost every time you run this query. The
number does not need to be the same when you test it.

iv. Index Reads: 0

v. Index Fields: Document Type, Combine Shipments, Bill-to
Customer No_, Currency Code, EU 3-Party Trade, No

According to the Index Information Query this index has never been used by SQL
Server in a READ operation. However, it has already been updated multiple times.
To disable the overhead of updating this index when there is a write operation in
the Sales Header table, we will no longer maintain this index on SQL Server.

Task 2: Disable an unused Index

High Level Steps
1. Determine the key that correspond to index $4 in the Sales Header

table.
2. Disable the index on SQL Server.

Detailed Steps
1. Determine the key that correspond to index $4 in the Sales Header

table.
a. Indexes in SQL Server correspond to Keys in Microsoft Dynamics

NAV. Index $4 in SQL Server corresponds to the fifth key in the
Dynamics NAV Table designer for table Sales Header.

b. In the Microsoft Dynamics NAV Development Environment, open
the Object Designer (if not already open).

c. Select Tables (on the left) and scroll to table 36 “Sales Header”.

d. Click on the Design button.
e. Select View, Keys.
f. Select the fifth row and select View, Properties.
g. In SQL Server Management Studio, in the Object Explorer (on the

left), expand the Databases folder.
h. In the Databases folder, expand “Demo Database NAV (7-0)” and

then expand Tables.

i. In the Tables folder, scroll down to the line: “dbo.CRONUS
International Ltd_$Sales Header” and expand it.

j. Expand the Indexes folder.
k. Select the line that contains “$4 (Unique, Non-Clustered)” then

Right-Click and select Properties.

13 - 56 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
l. The Index Properties window opens for index $4.
m. Verify that you can open the index properties and compare the

fields in the index with the fields in the key.

FIGURE 13.10: COMPARE KEY AND INDEX

2. Disable the index on SQL Server.

a. So that you do not maintain the index in SQL Server, the property
MaintainSQLIndex for the key has to be set to No as follows:

FIGURE 13.11: MAINTAINSQLINDEX PROPERTY

b. Close, and then save the table.

13 - 57 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

Lab 13.2: Optimize C/AL Code
Scenario

Mort is asked to improve the performance of a code unit.

Exercise 1: Analyze and improve the C/AL code and
corresponding SQL statements

Task 1: Analyze the generated SQL Statements

High Level Steps
1. Import Codeunit 123456780.
2. Design CodeUnit 123456780.
3. Analyze the C/AL code of the Batch Job and make improvements

where applicable.

4. Start SQL Profiler.
5. Start a new trace.
6. Execute the Batch Job.

7. Stop, and then save the trace.
8. Analyze the Trace.

Detailed Steps
1. Import Codeunit 123456780.

a. In the Microsoft Dynamics NAV Development Environment, open
the Object Designer by selecting Tools, and then click Object
Designer.

b. Select File, and then click Import.
c. Select the file CodeUnit 123456780.fob.
d. Click Open.

2. Design CodeUnit 123456780.
a. In the Object Designer, click CodeUnit.
b. Select CodeUnit 123456780 in the list.
c. Click Design to open the C/AL Editor.

3. Analyze the C/AL code of the Batch Job and make improvements

where applicable.

a. The following code contains the batch job that updates the
Name 2 field of the Customer table.

13 - 58 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
Code Example

Customer.SETRANGE(City,'London');

Customer.FINDFIRST;

REPEAT

 Customer."Name 2" := 'Updated' + FORMAT(CURRENTDATETIME);

 Customer.MODIFY;

UNTIL Customer.NEXT = 0;

MESSAGE('Ready!');

4. Start SQL Profiler.

a. Start the SQL Profiler by clicking Start > All Programs >
Microsoft SQL Server 2012 > Performance Tools > SQL
Server Profiler.

5. Start a new trace.
a. In the SQL Server Profiler window, start a new trace. In the

Tools menu, click File, and then New Trace.
b. In the Connect to Server window, select Connect. The Trace

Properties window opens.
c. In the Use the template field, select Tuning.
d. Click the Events Selection tab.

e. Select Column Filters . The Edit Filter window opens.
f. Select the field DatabaseName.
g. In the filter window, enter the Dynamics NAV database name in

the Like option.

h. Select OK.
i. Click Run to start the trace.

6. Execute the Batch Job.

a. In the Object Designer, select the CodeUnit 123456780, and then
click Run.

7. Stop, and then save the trace.

a. In the SQL Profiler window, click File, and then Stop Trace.
b. To save the trace file to the database for further analysis click: File

> Save as >Trace Table.

13 - 59 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
c. In the Connect to Server window, click Connect to connect to

SQL Server.

d. In the Destination Table window, in the Database field select
the Dynamics NAV database: “Demo Database NAV (7-0)”.

e. In the Destination Table window, in the Table field enter
“SQLProfilerTraceResultBefore”.

f. Click Ok.

8. Analyze the Trace.
a. To open Microsoft SQL Server Management Studio, click Start >

All Programs > Microsoft SQL Server 2012 > SQL Server
Management Studio. The Connect to SQL Server window
opens.

b. Click Connect to connect to SQL Server.

c. To open a new Query window click New Query.
d. Enter the following Query to display the trace results.

Code Example

use [Demo Database NAV (7-0)]

SELECT * FROM SQLProfilerTraceResultBefore

WHERE TextData LIKE '%Customer%'

e. Click Query, and then Execute to run the query.
f. In the query result, you see multiple lines lines. There are several

SELECT and multiple UPDATE statements.
i. Please ignore statements that don’t begin with SELECT or

UPDATE.

g. In the beginning there’s a SELECT statement that retrieves one
customer record with a WITH(READUNCOMMITTED) at the end.

h. The next SELECT statement on the Custmer table, retrieves the
customer record(s) to be modified with a TOP X and uses a
WITH(UPLOCK) statement.

i. Optimize the C/AL Code so that only one SELECT statement is
generated and executed.

13 - 60 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization
Task 2: Optimize the C/AL Code

High Level Steps
1. In the C/AL code of the imported CodeUnit (123456780) add a

SETCURRENTKEY function.

2. Change FIND(‘-‘) to FINDSET.
3. Save, and then compile the changes to the CodeUnit.

Detailed Steps
1. In the C/AL code of the imported CodeUnit (123456780) add a

SETCURRENTKEY function.
a. Add a SETCURRENTKEY(City) statement before executing the

FIND function.

2. Change FIND(‘-‘) to FINDSET.
a. Because the code is looping over Customer records, and inside

the loop it is modifying the records, you should use a
FINDSET(TRUE,FALSE) statement. This applies the correct isolation
level to the records. This avoids creating a second SELECT
statement to lock the records.

b. Also, use an IF statement to only run the update when there are
customer records.

c. The code now resembles this:

Customer.SETCURRENTKEY(City);

Customer.SETRANGE(City,'London');

IF Customer.FINDSET(TRUE,FALSE) THEN

REPEAT

 Customer."Name 2" := 'Updated' + FORMAT(CURRENTDATETIME);

 Customer.MODIFY;

UNTIL Customer.NEXT = 0;

MESSAGE('Ready!');

3. Save, and then compile the changes to the CodeUnit.

a. Save the changes to the CodeUnit by selecting File, and then
Save.

b. Close the CodeUnit.

13 - 61 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 3: Analyze the generated SQL Statements after Optimization

High Level Steps
1. Start a new SQL Profiler Trace.
2. Execute the optimized CodeUnit.

3. Export the Trace results.
4. Analyze the Trace.

Detailed Steps
1. Start a new SQL Profiler Trace.

a. Start a new trace in SQL Profiler by using the same Trace
Template and DatabaseName filter.

2. Execute the optimized CodeUnit.
a. In the Object Designer, select the CodeUnit 123456780 and click

Run.

3. Export the Trace results.
a. Stop the Trace in SQL Profiler.
b. Export the Trace Results to a new table named

SQLProfilerTraceResultAfter.

4. Analyze the Trace.
a. Open a new Query window by click New Query).
b. Enter the following query to display the trace results.

Code Example

use [Demo Database NAV (7-0)]

SELECT * FROM SQLProfilerTraceResultAfter

WHERE TextData LIKE '%Customer%'

c. Click Query and then Execute to run the query.
d. In the query result, you see multiple lines. There are one SELECT

and four UPDATE statements.
i. Please ignore statements that don’t begin with SELECT or

UPDATE.
e. The SELECT statement retrieves the customer records with a

WITH(UPDLOCK) at the end.
f. Notice that by optimizing the code the same result is obtained

with less SQL statements and more optimal locking of tables.

13 - 62 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization

Module Review
Module Review and Takeaways

This module covered the major points of insuring optimal performance in
Microsoft Dynamics NAV applications, especially when you use SQL Server.

The specific ways in which SQL Server is implemented were discussed in detail to
reveal why some operations are expensive as measured by performance, and
other operations are not as expensive and just as effective.

The labs demonstrated how to use the SQL Profiler to analyze what happens on
SQL Server. This tool should be used sparingly in a production
environment, since the tool itself consumes a large number of system resources.

Test Your Knowledge

Test your knowledge with the following questions.

1. What are two important proprietary Dynamics NAV features that are
simulated on SQL Server? Explain how these features are simulated.

2. What is the purpose of collation?

3. How can a SQL Server index be disabled from the table designer in C/SIDE
without disabling the key?

13 - 63 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
4. What can be done to help avoid deadlocks?

5. Explain the difference between the clustered index and the primary key.

6. How is SIFT stored on SQL Server?

7. What tools in SQL Server can be used to troubleshoot performance issues?

13 - 64 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 13: SQL Server Optimization

Test Your Knowledge Solutions

Module Review and Takeaways

1. What are two important proprietary Dynamics NAV features that are
simulated on SQL Server? Explain how these features are simulated.

MODEL ANSWER:

SIFT, which is simulated on SQL Server by indexed views, and before version
5.0 SP1 by additional SIFT tables.

Data Versioning, which is simulated on SQL Server by including a datetime
value for each record in the database.

2. What is the purpose of collation?

MODEL ANSWER:

The collation of a database determines which character set is used to store the
values in the database. It determines the way that data is sorted, and can
affect the way that data is retrieved from the database.

3. How can a SQL Server index be disabled from the table designer in C/SIDE
without disabling the key?

MODEL ANSWER:

By turning off the MaintainSQLIndex property of the key.

4. What can be done to help avoid deadlocks?

MODEL ANSWER:

To help avoid deadlocks, you can do the following:

• Lock tables in the same order for different types of transactions.

• Process records in the same order for different types of transactions.

• Keep transaction length to a minimum.

• Serialize the transaction, by locking a general table at the start of every
transaction.

13 - 65 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
5. Explain the difference between the clustered index and the primary key.

MODEL ANSWER:

The clustered index is the index that is used by SQL Server to physically store
the data. If the clustered index is set to any particular field, then SQL Server
physically stores the records in the table in the order of that field.

The primary key is the key that defines the uniqueness of a record. Primary
key field values uniquely identify a record in the table.

You can set an index other than the primary key index as a table’s clustered
index.

6. How is SIFT stored on SQL Server?

MODEL ANSWER:

Before version 5.0 SP1, SIFT was stored on SQL Server in separate SIFT tables,
and SIFT totals were updated by table triggers on SQL Server. From version
5.0 SP1 forward, SIFT is stored on SQL Server by indexed views.

7. What tools in SQL Server can be used to troubleshoot performance issues?

MODEL ANSWER:

The SQL Profiler.

13 - 66 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

	Module 13: SQL Server Optimization
	Module Overview
	Objectives

	SQL Server for Microsoft Dynamics NAV
	Representation of Microsoft Dynamics NAV Tables and Indexes in SQL Server
	Representation of Microsoft Dynamics NAV Tables and Indexes in SQL Server
	Code Example

	Collation Options
	Demonstration: Open the Collation window
	Demonstration Steps

	Collation Description
	Sort Order

	SQL Server Query Optimizer
	SQL Server Statistics
	Code Example
	Code Example
	Code Example
	Code Example

	Optimize a Microsoft Dynamics NAV Application
	Optimizing SIFT Tables
	Code Example
	Code Example

	Optimize Indexes
	Code Example

	The Index Usage Query
	Code Example
	Code Example

	Define Keys to Improve Performance
	Code Example
	Code Example

	Implicit/Explicit Locking
	Problems with NEXT
	Suboptimum Coding and Other Performance Penalties

	Data Access Redesign
	Simplified Deployment
	Decreased Resource Consumption
	Caching
	Improved Performance

	C/AL Database Functions and Performance on SQL Server
	GET, FIND, and NEXT
	Dynamic Result Sets
	Code Example

	CALCFIELDS, CALCSUMS, and COUNT Functions
	SETAUTOCALCFIELDS
	Code Example
	Code Example
	Code Example

	INSERT, MODIFY, DELETE, and LOCKTABLE

	Bulk Inserts
	Bulk Insert Constraints
	Code Example
	Code Example

	Locking, Blocking, and Deadlocks
	Locking
	Code Example

	Blocking
	Deadlocks
	Avoid Deadlocks

	SIFT Data Storage in SQL Server
	SQL Server Profiler
	SQL Server Profiler
	SQL Server Profiler Terminology
	Use SQL Server Profiler

	Lab 13.1: Analyze Index Usage
	Scenario
	Objectives
	Exercise 1: Use the Index Information Query to identify and disable unused indexes.
	Task 1: Execute the Index Information Query
	High Level Steps
	Detailed Steps
	Code Example

	Task 2: Disable an unused Index
	High Level Steps
	Detailed Steps

	Lab 13.2: Optimize C/AL Code
	Scenario
	Exercise 1: Analyze and improve the C/AL code and corresponding SQL statements
	Task 1: Analyze the generated SQL Statements
	High Level Steps
	Detailed Steps
	Code Example
	Code Example

	Task 2: Optimize the C/AL Code
	High Level Steps
	Detailed Steps

	Task 3: Analyze the generated SQL Statements after Optimization
	High Level Steps
	Detailed Steps
	Code Example

	Module Review
	Module Review and Takeaways
	Test Your Knowledge

	Test Your Knowledge Solutions
	Module Review and Takeaways

