
MODULE 12: TESTING AND DEBUGGING

Module Overview
Software does not always behave as developers expect, and various types of errors
and bugs frequently occur during development and production of every
application. Microsoft Dynamics NAV 2013 includes a comprehensive set of tools
and features that you can use to guarantee the highest quality of the
customizations that you ship.

You can use the testing features to develop fully automated unit tests. These tests
guarantee that your code always runs as designed, and that any bug or error that
is introduced by a later change is detected immediately by the developer, instead
of the end-users.

When there are bugs in the code, you can use the Debugger to step through
code execution line by line and inspect the values of variables, parameters, or text
constants.

Objectives
• Demonstrate the unit testing features of Microsoft Dynamics NAV

2013.

• Explain the test codeunits, test functions, and handler functions.

• Describe how to automate user interface testing.

• Explain the functionality and purpose of test runner codeunits.

• Develop a unit testing framework for the Seminar Management
solution.

• Describe the Debugger functionality and features.

• Demonstrate the debugging process.

12 - 1 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

Prerequisite Knowledge

Test-driven Development Fundamentals

Test-driven development (TDD) is an advanced technique that uses automated
unit tests to drive the design of software and force decoupling of dependencies.
The technique results in a comprehensive suite of unit tests that you run at any
time to provide feedback that the software is still working. Developers who use
the agile development methodology favor this technique.

The motto of test-driven development is "Red, Green, Refactor."

• Red: Create a test and make it fail.

• Green: Make the test pass by any means necessary.

• Refactor: Change the code to remove duplications in your project and
to improve the design while making sure that all tests still pass.

These steps explain the example TDD process:

1. Understand the requirements of the story, work item, or feature that
you are working on.

2. Red: Create a test and make it fail.
a. Imagine how the new code should be called and write the test as

if the code already existed.
b. Create the new production code stub. Write just enough code so

that it compiles.
c. Run the test. It should fail. This is a calibration measure to make

sure that your test is calling the correct code and that the code is
not working by accident. This is a meaningful failure, and you
expect it to fail.

3. Green: Make the test pass by any means necessary.
a. Write the production code to make the test pass. Keep it simple.
b. Some developers advocate hard-coding of the expected return

value first to verify that the test correctly detects success. This
varies from practitioner to practitioner.

c. If you have written the code so that the test passes as intended,
you are finished. You do not have to write more code. If new
functionality is still needed, then another test is needed. Make
this one test pass, and then continue.

d. When the test passes, you might want to run all tests to this point
to guarantee that everything else is still working.

12 - 2 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
4. Refactor: Change the code to remove duplication in your project and

to improve the design while ensuring that all tests still pass.

a. Remove duplication that is caused by the addition of the new
functionality.

b. Make design changes to improve the overall solution.
c. After each refactoring, rerun all the tests to make sure that they

all still pass.

5. Repeat the cycle. Each cycle should be very short, and a typical hour
should contain many Red/Green/Refactor cycles.

Characteristics of a Good Unit Test

A good unit test has the following characteristics:

• Runs fast. If the tests are slow, they will not be run frequently.

• Is very limited in scope. If the test fails, the source of the problem
should be obvious. It is important to only test one thing in a single
test.

• Runs and passes in isolation. If the tests require special environmental
setup or fail unexpectedly, then they are not good unit tests. Change
them for simplicity and reliability. Tests should run and pass on any
computer. The "it works on my box" excuse does not work.

• Clearly reveals its intention. Another developer should be able to view
the test and understand what is expected of the production code.

Benefits of Test-Driven Development

Even though the Test-Driven Development approach seems to add overhead and
increase the total amount of work that is needed to complete a task, it has the
following benefits:

• The suite of unit tests provides constant feedback that each
component is still working.

• The unit tests act as documentation that cannot go out-of-date,
unlike separate documentation that frequently is outdated.

• When the test passes and the production code is refactored to
remove duplication, it is clear that the code is finished. The developer
can move on to a new test.

• Test-driven development forces critical analysis and design because
you cannot create production code without truly understanding the
result that you want and how to test it.

12 - 3 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
• The software is better designed, that is, loosely coupled and easily

maintainable. The developer is free to make design decisions and
refactor at any time with the confidence that the software is still
working. This confidence is gained by running the tests. The need for
a design pattern may emerge, and the code can be changed at that
time.

• The test suite acts as a regression safety net on bugs: If a bug is
found, the developer should create a test to reveal the bug and then
modify the production code so that the bug is removed and all the
other tests still pass. On each successive test run, all previous bug fixes
are verified.

• Debugging time is reduced.

 Note: Test-Driven Development practices may be enabled to varying extents
in different development environments. Practices that work for some development
tools may not work in others. Microsoft Dynamics NAV 2013 enables you to write
automated unit tests that you can run easily and frequently. Therefore it enables
and promotes the most important TDD practices.

Test Features

Microsoft Dynamics NAV 2013 includes the following features to help you test
your application:

• Test codeunits

• Test runner codeunits

• Test pages

• UI handlers

• ASSERTERROR statement

Test Codeunits

Test codeunits are a special type of codeunit that enable you to write and run
code that automatically tests application functionality. Test codeunits can contain
the following types of functions:

• Test functions

• Handler functions

• Normal functions

12 - 4 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
When a test codeunit runs, it does the following:

• Runs the OnRun trigger.

• Runs each test function in the test codeunit.

• Records the result in a log.

• Displays the resulting log on message window.

The result of a test function is either SUCCESS or FAILURE. If any error is raised by
either the code that is tested or the test code itself, then the result is FAILURE, and
the error text is included in the results log. The codeunit continues to run the
remaining test functions in the codeunit whether a function results in SUCCESS or
FAILURE.

FIGURE 12.1: EXAMPLE

You create a test function by setting the Subtype codeunit property to Test:

1. Design a codeunit.
2. Click View > Properties.

3. Set Subtype to Test.

12 - 5 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

FIGURE 12.2: SUBTYPE PROPERTY FOR TEST CODEUNITS

Test Functions

A test function is a special type of a function that you use to perform a test on an
area of the application. Test functions do not accept any parameters, and do not
return a value. You can only define test functions in a test codeunit.

You can check or set the type of a function in a test codeunit by inspecting its
FunctionType property by doing the following:

1. In a test codeunit, click View > C/AL Globals.

2. Click the Functions tab.
3. Select a function.
4. Click View > Properties.
5. Check or set the FunctionType property.

The test functions have their FunctionType property set to Test.

12 - 6 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging

FIGURE 12.3: THE FUNCTIONTYPE PROPERTY FOR TEST
FUNCTIONS

 Note: You do not have to explicitly set the FunctionType property for test
functions. This property is automatically set to Test for all new functions that you
create in a test codeunit.

Transaction Model for Test Functions

Most of the tests in Microsoft Dynamics NAV 2013 are data related, and most of
data is very volatile. Writing tests that are completely independent of data can be
difficult, and failed tests could easily cause data chaos. Therefore, set the
transaction behavior for each test function by setting the TransactionModel
property.

The TransactionModel property has following values.

TransactionModel Remarks

AutoCommit A commit is issued at the end of the
test function. If an error occurs during
the test function, then the transaction
is rolled back. If an error occurs and
you catch it with an ASSERTERROR
statement, then the transaction is
rolled back. If the code that is being
tested calls the COMMIT function
before an error occurs, then the
transaction is rolled back only to the
point at which the COMMIT was
called.
AutoCommit is the default value.

12 - 7 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
TransactionModel Remarks

AutoRollback The transaction is rolled back after test
execution. Calls to the COMMIT
function fail with an error during a test
that is set to AutoRollback.

None The None transaction model enables a
TestPage to behave exactly like an
actual page. The test function does not
have an open write transaction.
Therefore, it cannot write directly to
the database. Each interaction with the
database occurs through TestPage
triggers. They open their own write
transactions. At the end of each
transaction, if no errors occurred, then
all changes are committed to the
database. If an error occurred, then
changes are rolled back to the end of
the transaction.
This differs from the AutoCommit and
AutoRollback transaction models. With
AutoCommit and AutoRollback, the
test function starts a write transaction.
Triggers that are invoked by the test
code inherit this open transaction
instead of running in their own
separate transactions. With the
AutoCommit and AutoRollback
settings, if several page interactions are
invoked from test code, then they
share the same transaction. With the
None setting, each page interaction
runs in a separate transaction.

You should use the None transaction
model for tests that do not write to the
database, such as tests that validate
calculation formulas or tests that only
read from the database.

 Note: The ERROR function always causes the transaction to be rolled back,
regardless of the TransactionModel setting.

12 - 8 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging

 Note: If you select the AutoRollback transaction model, then the code that the
function tests must not call the COMMIT function. If the code calls it, an error
occurs and the test function reports FAILURE.

Demonstration: Creating and Running a Test Codeunit

This demonstration shows how you can create a test codeunit, add a test function,
and run the test codeunit directly to view the resulting log.

Demonstration Steps

1. Create a new codeunit and save it as 90001, Test Sales.

a. In Object Designer, click Codeunit.
b. Click New.
c. Click File > Save.
d. In the Save As dialog box, in the ID field, type “90001”.

e. In the Name field, type “Test Sales”.
f. Make sure that the Compiled check box is selected, and then

click OK.

2. Set the properties to make the new codeunit a test codeunit.
a. Click View > Properties, or press SHIFT+F4.
b. Set Subtype to Test.

c. Close the Properties window.

3. Create a typical function that creates a sales order and returns a
reference to its header.

a. Click View > C/AL Globals.
b. On the Functions tab, in the first empty line, type

“CreateSalesOrder”.
c. Select the CreateSalesOrder function, and then press SHIFT+F4.

d. Set the FunctionType property to Normal.
e. Close the Properties window.
f. Click Locals.
g. On the Parameters tab, enter the following information.

Var Name DataType Subtype Length

Yes SalesHeader Record Sales Header

 CustNo Code 20

 ItemNo Code 20

 Qty Decimal

12 - 9 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
h. On the Variables tab, enter the following information.

Name DataType Subtype

SalesLine Record Sales Line

i. Close the C/AL Locals and C/AL Globals windows.
j. In the function trigger for the CreateSalesOrder function, enter

the following C/AL code.

SalesHeader.INIT;

SalesHeader."Document Type" := SalesHeader."Document Type"::Order;

SalesHeader."No." := '';

SalesHeader.INSERT(TRUE);

SalesHeader.VALIDATE("Sell-to Customer No.",CustNo);

SalesHeader.MODIFY(TRUE);

SalesLine.INIT;

SalesLine."Document Type" := SalesHeader."Document Type";

SalesLine."Document No." := SalesHeader."No.";

SalesLine."Line No." := 10000;

SalesLine.INSERT(TRUE);

SalesLine.VALIDATE(Type,SalesLine.Type::Item);

SalesLine.VALIDATE("No.",ItemNo);

SalesLine.VALIDATE(Quantity,Qty);

SalesLine.MODIFY(TRUE);

4. Add a new function to test creating a sales order, and name it
TestReleaseSalesOrder. Make sure that it automatically rolls back
any data changes after it finishes.
a. Click View > C/AL Globals.
b. On the Functions tab, in the first empty row, type

“TestReleaseSalesOrder”.
c. Select the TestReleaseSalesOrder function, and then press

SHIFT+F4.
d. Set the TransactionModel property to AutoRollback.

12 - 10 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
e. Close the Properties window.
f. Click Locals.

g. On the Variables tab, create the following local variable.

Name DataType Subtype

SalesHeader Record Sales Header

h. Close the C/AL Locals and C/AL Globals windows.
i. In the TestReleaseSalesOrder function trigger, enter the following

C/AL code.

CreateSalesOrder(SalesHeader,'10000','1000',10);

SalesHeader.TESTFIELD(Status,SalesHeader.Status::Open);

CODEUNIT.RUN(CODEUNIT::"Release Sales Document",SalesHeader);

SalesHeader.TESTFIELD(Status,SalesHeader.Status::Released);

5. Save the codeunit, run it, and then view the results.
a. Click File > Save. Click OK in the Save dialog box.

b. Close the codeunit.
c. In Object Designer, select the codeunit 90001, TestSales.
d. Click Run to run the test.
e. After the test finishes, view the log message.

FIGURE 12.4: TESTSALES INITIAL TEST RESULTS

12 - 11 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
ASSERTERROR Statement

When Microsoft Dynamics NAV 2013 runs test codeunits, a run-time error causes
the currently running test function to return FAILURE. However, you sometimes
have to test whether a specific error occurs. From the perspective of a test
function, the error is expected. For example, if you want to test that you cannot
change a value of a field on a released sales header, you actually expect an error.
If the error occurs, the test must return SUCCESS; on the other hand, if the error
does not occur, the test must return FAILURE, because the application behavior is
not as you expected.

You use the ASSERTERROR statement in test functions to test how your
application behaves under failing conditions. The ASSERTERROR keyword specifies
that an error is expected at run time in the statement that follows the
ASSERTERROR keyword.

If a simple or compound statement that follows the ASSERTERROR keyword
causes an error, then the execution successfully continues to the next statement in
the test function. You can receive the error text of the statement by using the
GETLASTERRORTEXT Function.

If a statement that follows the ASSERTERROR keyword does not cause an error,
then the ASSERTERROR statement causes the error. The test function that is
running produces a FAILURE result. The error text states: “An error was expected
inside an ASSERTERROR statement."

 Note: When a run-time error occurs in Microsoft Dynamics NAV 2013, the
transaction is rolled back. This applies even to the expected error when you use
ASSERTERROR. However, the execution continues, the transaction is rolled back,
and any data that was written to the database before ASSERTERROR does not exist
in the database after ASSERTERROR. Therefore, you should write code that tests
only whether the appropriate error has occurred after the ASSERTERROR
statement.

 Note: If you must have two successive ASSERTERROR statements in a single
test function, then you should write another test function, and move the second
ASSERTERROR there. Every test function should be as limited in scope as possible,
and should always test a single condition or case.

12 - 12 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
Demonstration: Using ASSERTERROR in Test Functions

This demonstration shows how you can use the ASSERTERROR statement to test
failing conditions.

Demonstration Steps

1. Add a new test function to the Test Sales codeunit to verify that you
cannot modify header fields for a released order.
a. Design codeunit 90001, Test Sales.

b. Click View > C/AL Globals.
c. On the Functions tab, select the row for the

TestReleaseSalesOrder function.

 Note: Make sure that you select the whole row, not just the name text for the
function.

d. Press the following keyboard shortcut: CTRL+C, DOWN, F3,
CTRL+V.

 Note: This creates a copy of the TestReleaseSalesOrder function.

e. Overwrite the name of the copy of the TestReleaseSalesOrder
function by using the following text:
“TestChangeReleasedSalesOrder”.

f. At the end of the TestChangeReleasedSalesOrder function trigger,
enter the following code line.

ASSERTERROR SalesHeader.VALIDATE("Location Code",'SILVER');

This is the complete function trigger code for TestChangeReleasedSalesOrder:

TestChangeReleasedSalesOrder Function

CreateSalesOrder(SalesHeader,'10000','1000',10);

SalesHeader.TESTFIELD(Status,SalesHeader.Status::Open);

CODEUNIT.RUN(CODEUNIT::"Release Sales Document",SalesHeader);

SalesHeader.TESTFIELD(Status,SalesHeader.Status::Released);

ASSERTERROR SalesHeader.VALIDATE("Location Code",'SILVER');

12 - 13 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
2. Save the codeunit, run it, and then view the results.

a. Click File > Save. Click OK in the Save dialog box.

b. Close the codeunit.
c. In Object Designer, select the codeunit 90001, TestSales.
d. Click Run to run the test.
e. After the test is complete, view the log message.

FIGURE 12.5: TESTSALES SECOND RUN RESULTS

 Note: The test fails because instead of calling the Sales-Post codeunit, you
should call the Sales-Post (Yes/No). This is the codeunit that runs when users start
the posting process.

Handler Functions

When writing test codeunits, it is a best practice to fully automate tests that do
not require any user input. In the event that any user interaction is required, such
as making a choice, or confirming a condition, then the code must make those
selections on behalf of the user. Moreover, to fully test the functionality of the
solution, the test code must test all possible code branches that result from
different user choices.

A handler function lets you automate tests by handling instances when user
interaction is required by the code that is being tested. In these instances, the test
function calls the handler function. This runs instead of the user interface. You
specify that a function is a handler function by setting its FunctionType property.

12 - 14 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
Following are several types of handler functions:

• MessageHandler

• ConfirmHandler

• StrMenuHandler

• PageHandler

• ModalPageHandler

• ReportHandler

• RequestPageHandler

Each handler function replaces a specific type of user interaction that may occur in
the code. Because there are several types of interactions, different handler
functions take different parameters. The following table shows the function
signatures for handler functions.

Handler Type Function Signature

MessageHandler <Function name>(<Msg> : Text[1024])

ConfirmHandler <Function name>(<Question> :
Text[1024]; VAR <Reply> : Boolean)

StrMenuHandler <Function name>(<Options : Test[1024];
VAR <Choice> : Integer; <Instruction> :
Text[1024])

PageHandler <Function name>(VAR <variable name>
: Page <page id>)

<Function name>(VAR <variable name>
: TestPage <testpage id>)

ModalPageHandler <Function name>(VAR <variable name>
: Page <page id>; VAR <Response> :
Action)
<Function name>(VAR <variable name>
: Page <testpage id>)

ReportHandler <Function name>(VAR <report name> :
Report <report id>)

RequestPageHandler <Function name>(VAR
<TestRequestPage> : TestRequestPage)

 Note: When you create handler functions, you must define the appropriate
parameters that are defined by the signature for the handler type. If the signature
of your handler function does not match the expected signature, you cannot
compile the codeunit.

12 - 15 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
HandlerFunctions Property

Defining a handler function does not cause the handler to automatically replace
the interaction. You must manually attach a handler function to a test function
where the user interaction occurs.

To attach a handler function to a test function, you specify the handler function
name in the HandlerFunctions property of the test function as follows:

1. On the Functions tab of the C/AL Globals window, select the test
function.

2. Click View > Properties.

3. Type the handler function name in the HandlerFunctions property.

 Note: If the test function uses more than one handler function, separate the
handler function names by a comma.

Every handler function that you enter in the HandlerFunctions property must be
called at least one time in the test function. If you run a test function that has a
handler function listed, and that handler function is not called, then the test fails.

Demonstration: Using Handler Functions to Automate
User Interaction

This demonstration shows how you can use the ConfirmHandler and
StrMenuHandler functions to handle different types of user interaction.

Demonstration Steps

1. Add a new test function to the Test Sales codeunit to test changing
the Sell-to Customer No. field for an existing sales order.
a. Design codeunit 90001, Test Sales.

b. Click View > C/AL Globals.
c. Create a new test function, and name it

“TestChangeCustomerOnSalesOrder”.
d. For the TestChangeCustomerOnSalesOrder function, define a

new local variable for the Sales Header table, and call it
SalesHeader.

e. In the TestChangeCustomerOnSalesOrder function trigger, enter
the following code.

CreateSalesOrder(SalesHeader,'10000','1000',10);

SalesHeader.VALIDATE("Sell-to Customer No.",'20000');

12 - 16 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
SalesHeader.MODIFY(TRUE);

2. Save the codeunit, run it, and then view the results.

a. Click File > Save. Click OK to the Save dialog box.
b. Close the codeunit.
c. In Object Designer, select the codeunit 90001, TestSales.
d. Click Run to run the test.

e. The test codeunit requests confirmation:

FIGURE 12.6: TESTSALES ASKING FOR CONFIRMATION

 Note: Tests should always be automated and never require user interaction.

3. Create a handler function to handle the confirmation dialog box.
Attach it to the TestChangeCustomerOnSalesOrder function.

a. Design the Test Sales codeunit.
b. Create a new function and name it

“HandleChangeCustomerConfirm”.
c. Select the HandleChangeCustomerConfirm function, and then

press SHIFT+F4.
d. Set FunctionType to ConfirmHandler.
e. Close the Properties window.

f. Click Locals.
g. On the Parameters tab, enter the following information.

Var Name DataType Length

 Question Text 1024

Yes Reply Boolean

h. Close the C/AL Locals window.
i. Select the TestChangeCustomerOnSalesOrder function, and

then press SHIFT+F4.

j. In the Value column for the HandlerFunctions property, type
“HandleChangeCustomerConfirm”.

k. Close the Properties and C/AL Globals windows.

12 - 17 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
l. In the HandleChangeCustomerConfirm function trigger, enter the

following code:

Reply := TRUE;

4. Save the codeunit, run it, and then view the results.
a. Click File > Save. Confirm the Save dialog box.
b. Close the codeunit.

c. In Object Designer, select the codeunit 90001, TestSales.
d. Click Run to run the test.
e. After the test is complete, view the log message.

FIGURE 12.7: TEST SALES RESULTS AFTER CONFIRMHANDLER IS
IMPLEMENTED

5. Add a handler function to handle the StrMenu function for sales
order posting.
a. Design the Test Sales codeunit.
b. Create a new function and name it “HandleSalesPostStrMenu”.

c. Select the HandleSalesPostStrMenu function, and then press
SHIFT+F4.

d. Set FunctionType to StrMenuHandler.
e. Close the Properties window.

f. Click Locals.
g. On the Parameters tab, enter the following information.

Var Name DataType Length

No Options Text 1024

Yes Choice Integer

No Instruction Text 1024

h. Close the C/AL Locals window.

i. On the Variables tab of the C/AL Globals window, declare an
Option variable and name it PostingType.

j. Select the PostingType variable and press SHIFT+F4.

12 - 18 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
k. Set the OptionString property to “Ship,Invoice,All” (make sure not

to enter any spaces).

l. Close the Properties and C/AL Globals windows.
m. In the HandleSalesPostStrMenu function trigger, enter the

following code.

CASE PostingType OF

 PostingType::Ship: Choice := 1;

 PostingType::Invoice: Choice := 2;

 PostingType::All: Choice := 3;

END;

6. Add a function to test posting of an invoice from a sales order. This
process must fail. Therefore, make sure that the function tests for the
correct failing conditions.
a. Create a new function and name it

“TestPostInvoiceFromSalesOrder”.
b. For the TestPostInvoiceFromSalesOrder function, define a new

local variable for the Sales Header table, and call it SalesHeader.
c. Select the TestPostInvoiceFromSalesOrder function, and press

SHIFT+F4.
d. In the Value column for the HandlerFunctions property, type

“HandleSalesPostStrMenu”.

e. Close the Properties window.
f. On the Text Constants tab, enter the following information.

Name ConstValue

Text001 There is nothing to post.

Text002 Expected error:\%1\\Actual error:\%2

g. Close the C/AL Globals window.
h. In the TestPostInvoiceFromSalesOrder function trigger, enter the

following code.

CreateSalesOrder(SalesHeader,'10000','1000',10);

PostingType := PostingType::Invoice;

ASSERTERROR CODEUNIT.RUN(CODEUNIT::"Sales-Post (Yes/No)",SalesHeader);

IF GETLASTERRORTEXT <> Text001 THEN

 ERROR(Text002,Text001,GETLASTERRORTEXT);

12 - 19 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

 Note: When this function runs, the Sales-Post (Yes/No) codeunit runs the
STRMENU function, which asks users whether they want to ship, invoice, or both.
This STRMENU is substituted with the code in the HandleSalesPostStrMenu
function, which returns the option for Invoice. Then the posting fails because the
invoice cannot be posted before shipment. This error is trapped by the
ASSERTERROR. Finally, the code verifies whether the error message has the
expected value of “There is nothing to post.” and raises an error if it does not.

7. Add a function which posts a shipment and then an invoice from a
sales order.
a. Create a new function and name it “TestPostSalesOrder”.
b. For the TestPostSalesOrder function, define a new local variable

for the Sales Header table, and call it SalesHeader.
c. Select the TestPostSalesOrder function, and press SHIFT+F4.
d. In the Value column for the HandlerFunctions property, type

“HandleSalesPostStrMenu”.

e. Close the Properties and the C/AL Globals windows.
f. In the TestPostSalesOrder function trigger, enter the following

code.

CreateSalesOrder(SalesHeader,'10000','1000',10);

PostingType := PostingType::Ship;

CODEUNIT.RUN(CODEUNIT::"Sales-Post (Yes/No)",SalesHeader);

PostingType := PostingType::Invoice;

CODEUNIT.RUN(CODEUNIT::"Sales-Post (Yes/No)",SalesHeader);

8. Save the codeunit, run it, and then view the results.
a. Click File > Save. Click OK the Save dialog box.
b. Close the codeunit.

c. In Object Designer, select the codeunit 90001, TestSales.
d. Click Run to run the test.
e. After the test finishes, view the log message.

12 - 20 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging

FIGURE 12.8: TEST SALES FINAL RESULTS

Testing Pages

Microsoft Dynamics NAV 2013 enables you to use variables of type TestPage to
automate user interaction testing. With test pages, you can do the following:

• View or change the value of a field on a test page.

• View the data on page parts.

• View or change the value of a field on a subpage.

• Filter the data on a test page.

• Perform any actions that are available on the page.

• Browse to different records.

 Note: Test functions and code on test pages run on the Microsoft Dynamics
NAV 2013 Server instance, even though they simulate client interactions.

Test Pages and the TransactionModel Property

To create meaningful tests, you first must understand how transactions run on
pages. In a typical user scenario, a user who is logged on to a client enters data
into one field of a page. Then the user enters data in another field on the page.
The user also checks the value of a third field. Finally, the user saves and closes the
page. Every time that a user enters data into a field, C/AL code may be triggered
and a new transaction is automatically started. The trigger code runs within this
new transaction. Field data is sent to the server where it is processed and
frequently updated in the database. When the C/AL code in the trigger is finished,
the transaction is automatically committed to the database and the page is
refreshed with updated data.

12 - 21 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
When you create test functions that exercise pages that interact with the
database, you have the following options for simulating user scenarios, and then
returning the database to its initial, familiar state:

• Set the TransactionModel property on the test function to
AutoRollback. This assumes that the code that you test does not
include calls to the COMMIT function. Any calls to the COMMIT
function result in an error. Most business logic does not call the
COMMIT function, but relies on implicit commits at the end of the
outermost C/AL trigger. The test continues as follows:

a. The test function starts a transaction.
b. The test function initializes data in the database. Database

changes are made in the transaction that was started by the test
function.

c. Fields on the test page are set or updated. Database changes are
made in the transaction that was started by the test function.

d. The test function reads the values of fields on the test page or
reads from the database to validate the test.

e. After the test function finishes, the transaction is rolled back and
the database is returned to its initial state.

• If the code that you test includes calls to the COMMIT function, then
set the TransactionModel property on the test function to
AutoCommit. The test continues as follows:

a. The test function starts a transaction.
b. The test function initializes data in the database. Database

changes are made in the transaction that was started by the test
function.

c. Fields on the test page are set or updated. Database changes are
made in the transaction that was started by the test function.

d. When the COMMIT function is called, changes are committed to
the database.

e. The test function reads the values of fields on the test page, or
reads from the database to validate the test.

f. After the test function finishes, changes are committed to the
database. To return the database to its initial state, you must
manually revert the changes by deleting, updating, or inserting
records, or you must use the TestIsolation property on the test
runner codeunit to roll back changes.

12 - 22 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
• Set the TransactionModel property on the test function to None to

simulate the behavior of an actual user. The test function does not
start a transaction and cannot write directly to the database.
However, a new transaction is started every time that a field on the
page is updated and C/AL code is triggered. At the end of each
transaction, changes are automatically committed to the database.
Use this option if your test does not write to the database. You do not
have to initialize data in the database before the test starts. For
example, use this option for tests that validate calculation formulas or
tests that read from the database. The test continues as follows:

a. If a field on the test page is set or updated, then the test page
starts a transaction. At the end of the transaction, changes are
committed to the database.

b. The test function runs the test code.
c. After the test finishes, no transactions are rolled back. To return

the database to its initial state, you must manually revert the
changes by deleting, updating, or inserting records, or you must
use the TestIsolation property on the test runner codeunit to roll
back changes.

Accessing Fields on Test Pages

You access the fields on a test page by using the dot notation. For example, if you
have a test page variable named CustomerCard that represents the Customer
Card page, then to access the Name field on the test page, you write
CustomerCard.Name in your code.

To retrieve the value of a field or to write a value in a field, use the Value property.
For example, if you have a test page variable named CustomerCard that
represents the Customer Card page, then you can read the value from a field or
assign a value to a field, by writing code that resembles the following.

CustNo := CustomerCard."No.".Value;

CustomerCard.Address.Value := ' 612 South Sunset Drive';

12 - 23 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
Accessing Page Parts and Subpages

You access page parts and subpages on a test page by using the dot notation. For
example, to compare the value of the No. field on a page to the value of the No.
field on a FactBox on the page, write the following code.

If CustomerCard."No.".Value <> CustomerCard."Sales Hist. Sell-to
FactBox"."No.".Value THEN

 ERROR('Page part data is not updated. Expected Customer No. is %1, actual
Customer No. is %2.',CustomerCard."No.".Value, CustomerCard."Sales Hist. Sell-to
FactBox"."No.".Value);

You can use the Symbol Menu to view page parts and subpages and to access
the functions, properties, fields, and actions on test page parts and subpages.

Filtering Data on Test pages

To filter the data that can be accessed on a test page, you use the FILTER property
and filter functions. For example, to filter the customers on the Customer List
page based on a range of values in the No. field, write the following code.

CustomerList.FILTER.SETFILTER("No.", '20000..30000');

Invoking Actions on Test Pages

Any action that is available on a page is also available on the test page that
mimics that page. You access page actions by using the dot notation and the
INVOKE function. Use the Symbol Menu to view the actions that are available on
a test page. To view actions that you designed by using Page Designer, select the
test page variable in the first column of the symbols, and then select Actions in
the second column.

12 - 24 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging

FIGURE 12.9: ACTIONS FOR A TESTPAGE VARIABLE FOR THE CUSTOMER
CARD PAGE

For example, to simulate clicking the Sales Prices action on the Customer Card
page, write the following code.

CustCard.OPENVIEW;

CustCard."Page Sales Prices".INVOKE;

To view built-in actions, such as Yes, No, OK, or Cancel, select the test page
variable in the first column of the symbols, and then select BuiltInActions in the
second column.

12 - 25 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

FIGURE 12.10: BUILT-IN ACTIONS FOR A TESTPAGE VARIABLE FOR THE
CUSTOMER CARD PAGE

 Note: The Symbol Menu may include built-in actions that are not available
on the page. If you call a built-in action that is not available on the page, then the
test fails.

For example, to simulate clicking OK after you create a new customer on the
Customer Card page, you can write the following code.

CustomerCard.OPENNEW;

CustomerCard.Name.Value := 'Adventure Works';

CustomerCard.OK.INVOKE;

Navigating Among Records

To simulate moving to different items on a list page or moving to different
records on a card page, you use one of the following navigation functions:

1. NEXT
2. PREVIOUS

3. FIRST
4. LAST
5. GOTORECORD
6. GOTOKEY

12 - 26 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
7. FINDFIRSTFIELD
8. FINDNEXTFIELD

9. FINDPREVIOUSFIELD

For example, to simulate showing a specific customer on a TestPage variable for
the Customer Card page, write the following code.

CustCard.OPENVIEW;

CustCard.GOTOKEY('30000');

Demonstration: Using a TestPage Variable in a Test
Codeunit

The following demonstration shows how to automate testing a page by using a
TestPage variable.

Demonstration Steps

1. Add a function to create and post a sales order through a TestPage
variable.
a. Design the Test Sales codeunit.

b. Create a new function, name it “TestSalesOrderPagePost”, and set
its Handlers property to “HandleSalesPostStrMenu”.

c. Define the following local variables for the
TestSalesOrderPagePost function.

Name DataType Subtype

SalesHeader Record Sales Header

SalesOrder TestPage Sales Order

d. In the TestSalesOrderPagePost function trigger, write the
following code.

CreateSalesOrder(SalesHeader,'10000','1000',10);

SalesOrder.OPENVIEW;

SalesOrder.GOTOKEY(SalesHeader."Document Type",SalesHeader."No.");

PostingType := PostingType::Ship;

SalesOrder.Post.INVOKE;

PostingType := PostingType::Invoice;

SalesOrder.Post.INVOKE;

12 - 27 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
2. Save the codeunit, run it, and then view the results.

a. Click File > Save. Click OK in the Save dialog box.

b. Close the codeunit.
c. In Object Designer, select the codeunit 90001, TestSales.
d. Click Run to run the test.
e. After the test finishes, view the log message.

FIGURE 12.11: TEST SALES RESULTS AFTER A TESTPAGE TEST

Test Runner Codeunits

You use test runner codeunits to manage the execution of test codeunits and to
integrate with test management or test reporting frameworks. A test runner
codeunit manages the execution of test codeunits that are run from its OnRun
trigger.

1. With test runner codeunits you can do the following:
2. Run multiple test codeunits.
3. Intercept each test codeunit or test function before they run.
4. Control which codeunits or test functions to run or to skip.

5. Retrieve the test results of a test function and the whole test codeunit
after they run.

To create a test runner codeunit, you set the Subtype property to TestRunner.

Test runner codeunits support two built-in triggers:

6. OnBeforeTestRun
7. OnAfterTestRun

These two triggers are not automatically created when you create a test runner
codeunit. You must manually create them if you want to use them. If you do not
need either or both of these triggers, you do not have to create them.

12 - 28 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
When you create these triggers, you must match the following signatures.

Trigger Signature

OnBeforeTestRun OnBeforeTestRun(CodeUnitId:
Integer;CodeUnitName:
Text[30];FunctionName: Text[128]): Boolean

OnAfterTestRun OnAfterTestRun(CodeUnitId:
Integer;CodeUnitName:
Text[30];FunctionName: Text[128];Success:
Boolean)

OnBeforeTestRun Trigger

The OnBeforeTestRun trigger runs before each test codeunit and test function and
enables you to skip running a test codeunit or a test function. The
OnBeforeTestRun trigger parameters contain the information about the test
codeunit and test function. You control whether to run the current test codeunit
or test function through the return value. If you return TRUE, the test codeunit or
test function runs. Otherwise, it is skipped.

If the FunctionName parameter is blank, you can control whether to run or skip
the whole test codeunit. In this case, returning TRUE runs all test functions, and
returning FALSE skips all test functions in the test codeunit.

OnBeforeTestRun always runs in its own database transaction.

You can use the OnBeforeTestRun triggers to perform preprocessing, such as
general initialization and logging, or to automate tests by integrating the test
runner codeunit with a test management framework.

OnAfterTestRun Trigger

When it is implemented, the OnAfterTestRun trigger is called after each test
function runs and after the whole test codeunit runs. The OnAfterTestRun trigger
also tells you whether the test codeunit or test function failed or succeeded. If you
implement the OnAfterTestRun trigger, then the result logs of the test codeunits
that run from the test runner codeunit are not shown.

You can use the OnAfterTestRun trigger to perform post-processing, such as
logging, or to automate tests by integrating the test runner codeunit with a test
management framework. The OnAfterTestRun trigger is run in its own database
transaction.

12 - 29 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
Demonstration: Creating and Running a Test Runner
Codeunit

This demonstration shows how to create a test runner codeunit to control which
test codeunits or test functions run during unit testing.

Demonstration Steps

1. Create a new test runner codeunit, and save it as 90002, Test Runner.
a. In Object Designer, click Codeunit, and then click New.
b. Press SHIFT+F4.

c. Set the Subtype property to TestRunner.
d. Close the Properties window.
e. Click File > Save.
f. In the Save As dialog box, in the ID field, type “90002”.

g. In the Name field, type “Test Runner”.
h. Make sure that the Compiled check box is selected, and then click

OK.

2. Add the OnBeforeTestRun and OnAfterTestRun triggers to the Test
Runner codeunit.
a. Click View > C/AL Globals.

b. On the Functions tab, write “OnBeforeTestRun” and
“OnAfterTestRun” on two separate lines.

c. Select the OnBeforeTestRun function, and then click Locals.
d. On the Parameters tab, enter the following information.

Name DataType Length

CodeUnitId Integer

CodeUnitName Text 30

FunctionName Text 128

e. On the Return Value tab, set Return Type to Boolean.
f. Close the C/AL Locals window.
g. Select the OnAfterTestRun function, and then click Locals.

h. On the Parameters tab, enter the following information.

Name DataType Length

CodeUnitId Integer

CodeUnitName Text 30

FunctionName Text 128

Success Boolean

12 - 30 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
i. Close the C/AL Locals window.

3. Define global variables to keep track of succeeded, failed, and
skipped tests, and a text constant to show the results.
a. On the Variables tab of the C/AL Globals window, enter three

Integer variables, and name them Succeeded, Failed, and
Skipped.

b. On the Text Constants tab, create the Text001 constant with the
following value: “Testing summary:\\Succeeded: %1\Failed:
%2\Skipped: %3”.

c. Close the C/AL Globals window.

4. Write code to run the Test Sales codeunit, and to show the results.
a. In the OnRun trigger, write the following code.

CODEUNIT.RUN(CODEUNIT::"Test Sales");

MESSAGE(Text001,Succeeded,Failed,Skipped);

5. Write code to skip any test functions where name includes the word
“Invoice”, and to run everything else.

a. In the OnBeforeTestRun function trigger, write the following
code.

IF (FunctionName <> '') AND (STRPOS(FunctionName,'Invoice') <> 0)

THEN BEGIN

 Skipped := Skipped + 1;

 EXIT(FALSE);

END;

EXIT(TRUE);

6. Write code to count the number of succeeded and failed test function
runs.
a. In the OnAfterTestRun function trigger, write the following code.

IF FunctionName = '' THEN

 EXIT;

IF Success THEN

 Succeeded := Succeeded + 1

12 - 31 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
ELSE

Failed := Failed + 1;

7. Save, close, and run the codeunit, and then view the results.
a. Click File > Save.
b. Confirm the Save dialog box.
c. Close the codeunit.

d. In Object Designer, select the Test Runner codeunit.
e. Click Run.
f. The message box shows the summary of the results.

FIGURE 12.12: TEST RUNNER RESULTS

 Note: The default log message box that you view when you directly run a test
codeunit is suppressed because you implemented the OnAfterTestRun trigger.

Testing Seminar Management
An important part of every development process is development of unit test
scripts. A comprehensive set of features in Microsoft Dynamics NAV 2013 enables
comprehensive testing automation of almost every aspect of the application. This
includes all C/AL code and most of the user interface.

Whether you follow a Test-Driven Development approach and follow the red-green-
refactor paradigm, or you first develop your application and then write test scripts,
your solution should always include a unit test framework that consists of test and test
runner codeunits.

12 - 32 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
Solution Design

Most customers do not explicitly specify the kinds of unit tests that you have to
run to guarantee highest code quality and lowest bug rates. However, all
customers require a high-quality solution. This maintains the integrity of the
standard application and does not disrupt daily use due to frequent bugs or
errors.

CRONUS International Ltd. did not specify any testing requirements, but you must
still make sure that the solution that you deliver is as bug-free as possible. You
also must avoid regression issues in the future, and provide automated means to
pinpoint any bugs that result from rework or an upgrade to a future version of
Microsoft Dynamics NAV 2013.

Your design decision is to implement a test framework that provides the following
functionality:

1. Developers can easily configure which test codeunits to add to or
remove from the framework.

2. Developers can easily select which test codeunits and test functions to
run or skip.

3. During each test run, only the selected test codeunits and test
functions must run.

4. For each test run, the framework must keep a history that contains
the following information:
a. Date and time of the test run
b. ID of the user who ran the test

5. For each test function, the framework must keep a history with the

following information:

a. Date and time of the test run
b. Indicator of test success or failure
c. Error message in the event of failure

6. For each test codeunit and test function, the framework must provide
statistics with the following information broken down by last run,
previous run, and all previous runs:
a. Count of successful tests

b. Count of failed tests
c. Total count of tests
d. Success ratio

12 - 33 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
All developers who are working on the implementation project for CRONUS
International Ltd. must provide unit tests for all functionality that they developed.
In the future, developers must follow the Test-Driven Development practices to
first develop the unit tests and add them to the framework, and then to develop
the functionality. For easier maintenance and management of test runs, there
must be one test codeunit per functional area.

The test framework will use the test runner codeunit functionality of Microsoft
Dynamics NAV 2013. The test runner codeunit will read the list of test codeunits
from the setup table and run each test codeunit that is selected for testing.

Through the OnBeforeTestRun trigger, the test runner codeunit will decide
whether to run a specific test function based on the information in the setup
table.

The OnAfterTestRun trigger will log the success or failure information about test
runs into the history tables.

Solution Development

To meet the design goals, you first have to develop the test framework, and then
develop the test codeunits for application functionality.

12 - 34 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
Test Framework

The test framework consists of the following objects.

Object Type Object ID Object Name Remarks

Table 123456751 Seminar Unit Test Setup Contains the list of test
codeunits, test functions, and
a check box to specify
whether a specific test
codeunit or test function is
included in test runs.
When a user inserts a new
row by specifying the
Codeunit ID, the list of
functions from that test
codeunit must automatically
be inserted into the Seminar
Unit Test Setup table.
Users can delete rows for test
codeunits only, but not test
functions. These are the rows
where Function Name is
empty.
When a user deletes a row, all
test function rows for that
test codeunit must be
deleted automatically.

Table 123456752 Seminar Unit Test
Register

Contains the history of test
runs. A test run is the event
when a user starts all selected
tests that are configured in
the Seminar Unit Test Setup
table. Each line in the
Seminar Unit Test Register
table corresponds to one test
run.

Table 123456753 Seminar Unit Test Entry Contains the success or
failure history of test
functions. Each line in the
Seminar Unit Test Entry
corresponds to one test run
of a test function.

12 - 35 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
Object Type Object ID Object Name Remarks

Page 123456751 Seminar Unit Test Setup Editable list page over the
Seminar Unit Test Setup
table that lets users configure
which test codeunits and test
functions are included in test
runs. It also lets users run
tests and access the test
history and statistics of a
specific test codeunit or test
function.

The only editable fields are
Codeunit ID and Run.

Page 123456752 Seminar Unit Test
Register

Noneditable list page over
the Seminar Unit Test
Register table. It lets users
access the details of a specific
test run.

Page 123456753 Seminar Unit Test
Entries

Noneditable list page over
the Seminar Unit Test Entry
table.

Page 123456754 Seminar Unit Test
Statistics

Noneditable card page that
follows all design rules of
statistics pages.

12 - 36 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
Object Type Object ID Object Name Remarks

Codeunit 123456751 Seminar Unit Test
Runner

Test runner codeunit that
reads information from the
Seminar Unit Test Setup
table, runs the selected test
codeunits and test functions,
and logs the test history into
the Seminar Unit Test
Register and Seminar Unit
Test Entry tables.
The codeunit must include a
setup mode in which it runs a
single test codeunit. Instead
of running the tests, the
codeunit skips all test
functions and inserts a row
into the Seminar Unit Test
Setup table for each test
function that is present in the
test codeunit. This test mode
is run from the OnInsert
trigger of the Seminar Unit
Test Setup table.

12 - 37 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
Specific Test Codeunits

For each functional area of the Seminar Management application area, you must
provide one test codeunit. This means that there should be the following test
codeunits.

Test Codeunit Unit Test Examples

123456752 Seminar Master
Data Tests

• Test the Seminar Setup Card page to
make sure that users can look up
number series and cannot enter
invalid number series.

• Test the Seminar Card page to make
sure that number series functionality
is integrated and works as expected
by Microsoft Dynamics NAV 2013
standards.

• Test the Seminar Card page to make
sure that the VAT Prod. Posting
Group field is updated when Gen.
Prod. Posting Group field is
modified.

• Test the Seminar List and Seminar
Card pages to make sure that the
Ledger Entries action shows the
correct ledger entries for the selected
seminar.

123456753 Seminar
Registration Tests

• Test that creating a new seminar
registration from the Seminar List
creates a new seminar registration for
the selected seminar, and that seminar
related fields are copied from the
Seminar record into the Seminar
Registration page.

• Test that when a room is selected, the
room-related fields are copied from
the Resource record into the Seminar
Registration page.

• Test to specify that when a room
allows fewer participants than is
specified in the Seminar Registration
Header record, the user has to
confirm that room.

• Test that only canceled seminar
registrations can be deleted.

12 - 38 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
Test Codeunit Unit Test Examples

123456754 Seminar Posting
Tests

• Test that posting succeeds only for
closed seminar registrations.

• Test that posting succeeds only for
seminars that have registered
participants.

• Test that posting generates a register
record with correct information for
the user, date, and source code.

123456756 Seminar Reporting
Tests

• Test that clicking Print on the
Seminar Registration page runs the
Seminar Reg.-Participant List report.

123456757 Seminar Statistics
Tests

• Test that clicking Statistics on the
Seminar Card and Seminar List
pages shows the Seminar Statistics
page that has the correct seminar
selected.

123456758 Seminar
Dimensions Tests

• Test that global dimensions that are
set to the Seminar record are available
in the Default Dimensions page that
is invoked from the Dimensions action
on the Seminar Card page.

• Test that dimensions that are set to
Seminar Registration through the
Dimensions action update the
Shortcut Dimension 1 Code and
Shortcut Dimension 2 Code fields.

 Note: The list of the unit tests for each test codeunit is not comprehensive,
and you can add more tests. In a real-world project, there would be many more
tests for each functional area.

12 - 39 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

Lab 12.1: Create Seminar Management Unit Tests
Scenario

Because of how much work is related to the development of the Seminar
Management unit test framework and unit tests, Simon, the development
manager on the implementation project for CRONUS International Ltd., has split
the work tasks. Simon will develop the test framework, and you will develop the
individual unit tests.

Exercise 1: Import the Testing Framework
Exercise Scenario

Simon developed the test framework and gave you the objects. You now import
the Seminar Management test framework from the.fob file that was provided.

Task 1: Import the Objects

High Level Steps
1. Import the Lab 12.1 - Starter.fob object file into the Microsoft

Dynamics NAV 2013 Development Environment.

Detailed Steps
1. Import the Lab 12.1 - Starter.fob object file into the Microsoft

Dynamics NAV 2013 Development Environment.
a. In Object Designer, click File > Import.
b. Browse to the Lab 12.A - Starter.fob file, and then click Open.
c. In the dialog box stating that there were no conflicts, click Yes to

complete the import.

Exercise 2: Create the Unit Tests
Exercise Scenario

You develop a test codeunit to contain all unit tests for Seminar Management
master data.

Task 1: Master Data Unit Tests

High Level Steps
1. Create the Seminar Master Data Tests codeunit.

2. Create a test function to test that the AssistEdit(…) button on the
No. field on the Seminar Card page runs the standard No. Series
functionality.

12 - 40 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
3. Create a modal page handler function for the No. Series List page

that simulates clicking OK, and then attach this handler to the
TestSeminarCardNoSeries function.

4. Include the Seminar Master Data Tests codeunit in the test framework
configuration.

Detailed Steps
1. Create the Seminar Master Data Tests codeunit.

a. In Object Designer, click Codeunit, and then click New.
b. Set the properties on the codeunit to make it a test codeunit.

c. Save the codeunit as 123456752, Seminar Master Data Tests.

2. Create a test function to test that the AssistEdit(…) button on the
No. field on the Seminar Card page runs the standard No. Series
functionality.
a. Create a test function and name it “TestSeminarCardNoSeries”.
b. Declare the following local variables for the

TestSeminarCardNoSeries function.

Name DataType Subtype

SeminarCard TestPage Seminar Card

c. In the TestSeminarCardNoSeries function trigger, write the
following code.

SeminarCard.OPENNEW;

SeminarCard."No.".ASSISTEDIT;

3. Create a modal page handler function for the No. Series List page
that simulates clicking OK, and then attach this handler to the
TestSeminarCardNoSeries function.
a. Create a new function, and name it “NoSeriesListHandler”.
b. Set the properties on the function to make it a modal page

handler.

c. Define the following parameter for the NoSeriesListHandler
function.

Var Name DataType Subtype

Yes NoSeriesList TestPage No. Series List

d. In the NoSeriesListHandler function trigger, write the following
code.

NoSeriesList.OK.INVOKE;

12 - 41 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
e. Set the HandlerFunctions property for the

TestSeminarCardNoSeries function to “NoSeriesListHandler”.

f. Save, and then close the codeunit.

4. Include the Seminar Master Data Tests codeunit in the test framework
configuration.

a. Run page 123456751, Seminar Unit Test Setup.
b. Click New.
c. In the Codeunit ID field, type “123456752”. The

TestSeminarCardNoSeries function is added to the list
automatically.

d. Click Close.

Task 2: Seminar Registration Unit Tests

High Level Steps
1. Create the Seminar Registration Tests codeunit.
2. Create a test function to test the confirmation of the change of

maximum number of participants, when the selected room
accommodates less than was defined for the seminar.

3. Create a confirm handler that confirms the question, and then attach
it to the TestSeminarRegistrationRoomMaxParticipants function.

4. Include the Seminar Registration Tests codeunit in the test framework
configuration.

Detailed Steps
1. Create the Seminar Registration Tests codeunit.

a. In Object Designer, click Codeunit, and then click New.
b. Set the properties on the codeunit to make it a test codeunit.

c. Save the codeunit as 123456753, Seminar Registration Tests.

2. Create a test function to test the confirmation of the change of
maximum number of participants, when the selected room
accommodates less than was defined for the seminar.
a. Create a new test function and name it

“TestSeminarRegistrationRoomMaxParticipants”.
b. Define the following local variables for the

TestSeminarRegistrationRoomMaxParticipants function.

Name DataType Subtype

Seminar Record Seminar

Resource Record Resource

SeminarRegistration TestPage Seminar Registration

12 - 42 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
c. In the function trigger for the

TestSeminarRegistrationRoomMaxParticipants function, write the
following code.

Seminar.FINDFIRST;

SeminarRegistration.OPENNEW;

SeminarRegistration."Seminar No.".SETVALUE(Seminar."No.");

Resource.SETRANGE(Type,Resource.Type::Machine);

Resource.SETFILTER("Maximum Participants",'<>0');

Resource.FINDFIRST;

SeminarRegistration."Maximum Participants".SETVALUE(Resource."Maximum
Participants" + 1);

SeminarRegistration."Room Resource No.".SETVALUE(Resource."No.");

SeminarRegistration."Maximum Participants".ASSERTEQUALS(Resource."Maximum
Participants");

SeminarRegistration.OK.INVOKE;

3. Create a confirm handler that confirms the question, and then attach
it to the TestSeminarRegistrationRoomMaxParticipants function.
a. Create a new function, and name it “ConfirmMaxParticipants”.

b. Set the properties for the ConfirmMaxParticipants function to
make it a confirm handler.

c. Define the following parameters for the
ConfirmMaxParticipants function.

Var Name DataType Length

No Question Text 1024

Yes Reply Boolean

d. In the ConfirmMaxParticipants function trigger, write the
following code:

Reply := TRUE;

e. Set the HandlerFunctions property of the
TestSeminarRegistrationRoomMaxParticipants function to
“ConfirmMaxParticipants”.

f. Save and close the codeunit.

12 - 43 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
4. Include the Seminar Registration Tests codeunit in the test framework

configuration.

a. Run page 123456751, Seminar Unit Test Setup.
b. Click New.
c. In the Codeunit ID field, type “123456753”.
d. Click Close.

Task 3: Dimension Integration Unit Tests

High Level Steps
1. Create the Seminar Dimensions Tests codeunit.
2. Create a function to test that global dimensions set through the

Dimensions action of the Seminar Registration page are correctly
copied to the Shortcut Dimension 1 Code and Shortcut Dimension
2 Code fields.

3. Create a new modal page handler function for the Edit Dimension
Set Entries page to simulate entering values for two global
dimensions for a seminar registration.

4. Include the Seminar Dimensions Tests codeunit in the test framework
configuration.

Detailed Steps
1. Create the Seminar Dimensions Tests codeunit.

a. In Object Designer, click Codeunit, and then click New.
b. Set the properties on the codeunit to make it a test codeunit.
c. Define the following global variables for the function.

Name DataType Subtype

GLSetup Record General Ledger Setup

DimVal1 Record Dimension Value

DimVal2 Record Dimension Value

d. Save the codeunit as 123456758, Seminar Dimensions Tests.

2. Create a function to test that global dimensions set through the
Dimensions action of the Seminar Registration page are correctly
copied to the Shortcut Dimension 1 Code and Shortcut Dimension
2 Code fields.

a. Create a new function and name it
“TestShortcutDimensionsRegistration”.

12 - 44 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
b. Define the following local variables for the

TestShortcutDimensionsRegistration function.

Name DataType Subtype

SeminarRegistration TestPage Seminar Registration

Seminar Record Seminar

SemReg Record Seminar Registration
Header

c. In the TestShortcutDimensionsRegistration function trigger, write
the following code.

Seminar.FINDFIRST;

SeminarRegistration.OPENNEW;

SeminarRegistration."Seminar No.".SETVALUE(Seminar."No.");

GLSetup.GET;

GLSetup.TESTFIELD("Global Dimension 1 Code");

GLSetup.TESTFIELD("Global Dimension 2 Code");

SeminarRegistration.Action43.INVOKE;

SemReg.GET(SeminarRegistration."No.".VALUE);

SemReg.TESTFIELD("Shortcut Dimension 1 Code",DimVal1.Code);

SemReg.TESTFIELD("Shortcut Dimension 2 Code",DimVal2.Code);

 Note: Action43 in this code example refers to the Dimension action on the
Seminar Registration page. Its ID may differ, depending on the exact steps you
made during developing the page. If this code example does not compile because
Action43 is unknown, then design the Seminar Registration page, find the
Dimensions action, and then note its ID. Then use that ID in this code to refer to
that action.

3. Create a new modal page handler function for the Edit Dimension
Set Entries page to simulate entering values for two global
dimensions for a seminar registration.
a. Create a new function and name it “EditDimSetHandler”.
b. Set properties on the EditDimSetHandler function to make it a

modal page handler.
c. Define the following parameters for the EditDimSetHandler

function.

12 - 45 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
Var Name DataType Subtype

Yes EditDimSet TestPage Edit Dimension Set
Entries

d. In the EditDimSetHandler function trigger, write the following
code.

DimVal1.SETRANGE("Dimension Code",GLSetup."Global Dimension 1 Code");

DimVal1.FINDFIRST;

EditDimSet.NEW;

EditDimSet."Dimension Code".SETVALUE(GLSetup."Global Dimension 1 Code");

EditDimSet.DimensionValueCode.SETVALUE(DimVal1.Code);

DimVal2.SETRANGE("Dimension Code",GLSetup."Global Dimension 2 Code");

DimVal2.FINDFIRST;

EditDimSet.NEW;

EditDimSet."Dimension Code".SETVALUE(GLSetup."Global Dimension 2 Code");

EditDimSet.DimensionValueCode.SETVALUE(DimVal2.Code);

EditDimSet.OK.INVOKE;

e. Set the HandlerFunctions property for the
TestShortcutDimensionsRegistration function to
“EditDimSetHandler”.

f. Save, and then close the codeunit.

4. Include the Seminar Dimensions Tests codeunit in the test framework
configuration.
a. Run page 123456751, Seminar Unit Test Setup.
b. Click New.
c. In the Codeunit ID field, type “123456758”.

d. Click Close.

12 - 46 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
Exercise 3: Run Unit Tests
Exercise Scenario

You now run the unit tests through the Seminar Management unit test framework,
and then check the unit test history to verify that the tests have run successfully.

Task 1: Run the Tests

High Level Steps
1. Use the test framework to run unit tests.

Detailed Steps
1. Use the test framework to run unit tests.

a. Run page 123456751, Seminar Unit Test Setup.
b. Click Run Tests. The tests run automatically and the progress is

shown in a dialog box.

c. After the progress dialog box closes, click Test Entries to verify
that tests have generated results.

d. Close the Test Entries page.

e. Click Run Tests two more times to generate more test results.

Task 2: Check Test Statistics

High Level Steps
1. Show statistics for a test codeunit.

Detailed Steps
1. Show statistics for a test codeunit.

a. In the Seminar Unit Test Setup page, select the row for the
Seminar Master Data Tests codeunit.

b. Click Statistics.

c. Verify that the statistics show the number of succeeded and failed
tests over all previous tests.

d. Close Statistics.

12 - 47 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
Task 3: Check the Test Register

High Level Steps
1. Show the unit test register.
2. Show test entries for a test run.

Detailed Steps
1. Show the unit test register.

a. Run the page 123456752, Seminar Unit Test Register.
b. Verify that there are three register lines that contain date, time,

and user ID for each test run.
2. Show test entries for a test run.

a. Select the first row in the Seminar Unit Test Register page.

b. Click Test Entries to show the Seminar Unit Test Entries page.
c. Verify that the entries shown match the entries specified in the

From Entry No. and To Entry No. fields of the Seminar Unit
Test Register page.

d. Close the Seminar Unit Test Entries and Seminar Unit Test
Register pages.

Debugging
The process of finding and correcting errors is called debugging. Microsoft
Dynamics NAV 2013 provides an integrated debugger to help you inspect your
code to verify that your application runs as expected. The debugger user interface
(UI) runs in the Microsoft Dynamics NAV 2013 client for Windows. The debugger
services run in the Microsoft Dynamics NAV Server.

Activating the Debugger

When you activate the debugger, you start it. When you start the debugger, it can
be in one of the following states:

• Attached to a session.

• Waiting to attach to a session.

To start the debugger in the Microsoft Dynamics NAV 2013 Development
Environment, in the Tools menu, click Debugger > Debug Session. This opens
the Session List window that shows all debuggable sessions that currently run on
the same Microsoft Dynamics NAV 2013 server instances on the local machine
instance as the debugger . This is the same instance that is targeted when you use
the Run action on Application objects in the Object Designer window.

12 - 48 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging

FIGURE 12.13: SESSION LIST

In the Session List page, you attach the debugger to a session by doing one of
the following:

• Select a specific session, andthen click Debug.

• Click Debug Next, and then start a new session.

 Note: Selecting Debug Next Session is useful if you want to debug web
services. A web service call exists as a session only during the web service call. This
typically is not long enough for you to select the specific session in the Session List
page.

Debugger Page

After you start a debugger, the Debugger page opens. You use the Debugger
page to manage the debug process as follows:

• Step through the code.

• Manage the code execution.

• Manage the breakpoints.

• View the variables in scope of the current line.

• View the last error message.

• Manage watches.

• View the call stack.

12 - 49 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
The “Debugger” figure shows the Debugger page.

FIGURE 12.14: DEBUGGER

Breakpoints

You can break code execution of the session that you are debugging by doing the
following:

• Setting a breakpoint on a line of code.

• Specifying a break on the next statement.

• Specifying a break on errors.

• Specifying a break on record changes.

You can set breakpoints before you start a debugging session or when you are
debugging. Breakpoints and break rules are applied immediately in the session to
which the debugger is attached.

12 - 50 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
Break Rules

The debugger usually stops on breakpoints. However, you can enable other break
rules that enable the debugger to do the following:

• Stop on error.

• Break on record changes.

• Skip any breaks in Codeunit 1.

To define these additional rules in the Debugger page, click Break Rules. It
opens the Debugger Break Rules dialog box.

The “Debugger Break Rules” figure shows the Debugger Break Rules dialog box.

FIGURE 12.15: DEBUGGER BREAK
RULES

Breakpoints in Code

If you set a breakpoint on a line of C/AL code, then execution breaks before the
first statement on the line executes. If you set a breakpoint on a line of code that
does not have a C/AL statement, then the breakpoint is automatically set on the
next statement.

You can set a breakpoint on a code line in the C/AL Editor window or the
Debugger page by positioning the cursor in the line where you want to set the
breakpoint, and then pressing F9.

 Note: As an alternative, in the Tools menu, click Debugger > Toggle
Breakpoint in the C/AL Editor window, or click Toggle in the Debugger page.

You can enable or disable a breakpoint. The debugger only stops on enabled
breakpoints.

12 - 51 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
The “Enabled Breakpoint” figure shows how the enabled breakpoint looks in the
C/AL Editor window.

FIGURE 12.16: ENABLED BREAKPOINT

The “Disabled Breakpoint” figure shows the disabled breakpoint in the C/AL
Editor window.

12 - 52 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging

FIGURE 12.17: DISABLED BREAKPOINT

 Note: You disable breakpoints when you do not want the debugger to stop at
specific points in the code, but may later want to debug those points. Then instead
of searching through the code and creating a new breakpoint, you can enable a
disabled breakpoint from the list of all breakpoints.

Breakpoints Overview

You manage all breakpoints from the Debugger Breakpoint List page. To access
it, in the Debugger page, click Breakpoints. The Debugger Breakpoint List
page enables you to do the following:

• Delete a specific breakpoint.

• Delete all breakpoints.

• Enable or disable a specific breakpoint.

• Enable or disable all breakpoints.

• Create a new breakpoint by specifying the object type, ID, and line
number manually.

12 - 53 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
The “Debugger Breakpoint List” image shows the Debugger Breakpoint List
page.

FIGURE 12.18: DEBUGGER BREAKPOINT LIST

Conditional Breakpoints

Most breakpoints break the code execution unconditionally. Sometimes you want
to break the execution only if certain conditions are met, but execute the code
without breaking. To set a condition on a breakpoint, when the execution stops
on the breakpoint, in the Debugger page click Set/Clear Condition. This shows
the Debugger Breakpoint Condition dialog box where you can enter a Boolean
expression. This may include any of the variables in scope of the breakpoint line.
When the code execution reaches the breakpoint, the debugger first evaluates the
condition expression. Then, if it evaluates to TRUE, the debugger breaks. If it
evaluates to FALSE, it continues execution without breaking.

 Note: You can disable a conditional breakpoint. When you do this, the
condition remains defined on the breakpoint. It will apply after you enable the
breakpoint again.

12 - 54 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
An enabled conditional breakpoint is shown with a white plus (+) sign in the red
breakpoint circle. A disabled conditional breakpoint is shown with a red plus (+)
sign in the white breakpoint circle.

FIGURE 12.19: CONDITIONAL BREAKPOINTS

 Note: Conditional breakpoints are only clearly distinct in the Debugger page.
In the C/AL Editor window where they are displayed as regular breakpoints, you
cannot see the difference between unconditional and conditional breakpoints.

Code Tracking

After a breakpoint is reached, you use the debugger to execute C/AL code one
line at a time. This procedure is called stepping. The Code Tracking group on the
Home tab provides the following three actions for stepping:

• Step Into

• Step Over

• Step Out

12 - 55 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
Step Into and Step Over differ in how they handle function calls. Either command
instructs the debugger to execute the next line of code. If the line contains a
function call, Step Into executes only the call itself and then stops at the first line
of code inside the function. Step Over executes the function and then stops at the
first line outside the function. Use Step Into if you want to look inside the function
call. Use Step Over if you want to avoid stepping into functions.

Use Step Out when you are inside a function call and want to return to the calling
function. Step Out resumes execution of your code until the function returns, and
then breaks at the return point in the calling function.

The Running Code group on the Home tab provides the Continue action. The
Continue action executes code until the next breakpoint or until execution ends.

The Debugger page indicates the current line of code by a yellow arrow to the
left of the line that is being debugged. The arrow is positioned on the line that
executes next.

FIGURE 12.20: CURRENT LINE IN THE DEBUGGER PAGE

Variables and Watches

Bugs are frequently caused because variables contain values that differ from what
you expected when you designed the application. During debugging, you
frequently have to inspect the contents of variables, parameters, or text constants
at each point.

12 - 56 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
The Debugger Variable List page provides an overview of all variables in scope
of the current line of code. For each variable, you view the name, value, and data
type.

FIGURE 12.21: DEBUGGER VARIABLES LIST

You can use the Watches FactBox to view the values of variables. Variables that
you add to the Watches FactBox are displayed until you delete them, even if they
go out of scope in the currently executing code. This differs from the Debugger
Variable List page, which displays only the variables that are currently in scope. If
a variable is out of scope, then <Out of Scope> is displayed in the Value column
of the Watches FactBox.

To add a variable to the Watches list, follow this procedure:

1. In the Debugger window, in the code viewer, rest the pointer over
the variable that you want to add to Watches. A DataTip appears.

2. In the DataTip, click the Watch icon to the left of the variable name.

Alternatively:

1. In the Debugger window, click Variables.
2. In the Debugger Variable List window, select the variable that you

want to add to Watches, and then click Add Watch.

12 - 57 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

FIGURE 12.22: WATCHES FACTBOX

 Note: Variables that you add to the Watches FactBox are persisted between
debugging sessions.

Call Stack

In the Call Stack FactBox, you can view the triggers or function calls that led to
the current line of code. Each line shows a single function or a trigger, and shows
information about the object type, object ID, object name, function name, and
line number of the line where another function was called or a breakpoint was hit.
The trigger or function that started the current transaction is at the bottom of the
call stack. The current function or trigger is at the top of the call stack.

You can click any row lower in the Call Stack FactBox to view the code for the
object that is indicated in the Call Stack line with a green arrow. The arrow
indicates the line that called a function or ran a trigger higher in the call stack.

12 - 58 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging

FIGURE 12.23: CALL STACK

 Note: When you click any line lower in the call stack, you can access the
variables in scope at that point of execution. The Watches FactBox also updates to
show the values of watched variables at that point.

Running Code

You can control how debugger runs the code by clicking actions in the Running
Code group of the Home tab in the Debugger page.

To continue the execution of the code without stepping through lines, click
Continue, or press F5. This runs the code until the next breakpoint is reached, or
until all C/AL code in the current call is executed.

To stop current debugging activity, click Stop. This ends the current transaction,
stops executing any remaining code on its execution path, and shows the
following error message.

FIGURE 12.24: RUN-TIME ERROR AFTER STOPPING THE
DEBUGGER

12 - 59 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

 Note: When you debug test functions that run from a test runner codeunit,
each test function call is a separate transaction. When you click Stop in a test
function, the current transaction ends and returns FAILURE as the result of the
current test function. Then the test runner continues to run the remaining test
codeunits. Test functions are included in the test run.

To break the debugger at the next C/AL statement, click Break. This action is
enabled only when the debugger is not active, and when its caption includes the
“Waiting for break” text. If you click Break, and then start an activity, such as
clicking an action, starting data entry, or running an object, the debugger will
break at the first C/AL statement that executes in the current session, regardless of
whether a breakpoint is set on it.

Demonstration: Using the Debugger

The following demonstration shows how to use the Debugger feature of Microsoft
Dynamics NAV 2013.

Demonstration Steps

1. Set a breakpoint to break when a new record is inserted into the
Seminar table.
a. In Object Designer, design table 123456700, Seminar.
b. Click View > C/AL Code.

c. Select the first line of code in the OnInsert trigger, and press F9.
An enabled breakpoint indicator is displayed to the left of the
line.

d. Close the Table Designer.
e. Start the Microsoft Dynamics NAV 2013 client for Windows. Make

sure that there is only one instance of it running.

2. Start the Debugger.
a. Click Tools > Debugger > Debug Session.
b. In the Session List page, select the session where Client Type is

RoleTailored client, and then click Debug. The Debugger page
opens.

3. Trigger the breakpoint.
a. In the Microsoft Dynamics NAV 2013 client for Windows, in the

Search field, type “Seminars”, then run the Seminars page.
b. In the Seminars page, click New.

12 - 60 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
c. In the Seminar Card page, click the Name field. This causes the

page to insert a new record into the Seminar table, and runs the
OnInsert trigger. The Debugger page starts, and the code
execution stops at the first line of the OnInsert trigger.

4. Add a field to the Watches list.

a. Position the pointer over the “No.” text in the first line of code in
the OnInsert trigger until the tooltip appears.

b. Click the Add Watch icon next to Rec.Fields.”No.” A watch with
name <Globals>.Rec.Fields.”No.” appears in the Watches
FactBox.

c. Check the watch to verify that the value for the No. field is blank.

5. Step through the code.

a. Click Step Over (or press F10) until you reach the
NoSeriesMgt.InitSeries function call.

 Note: Depending on how you tested labs in earlier modules, at this point you
may get the following error: “The Seminar Setup does not exist.” If you get this
error, run page 123456702, Seminar Setup and then repeat this step.

b. Click Step Into (or press F11) to start debugging the InitSeries
function of the NoSeriesManagement codeunit. View the Call
Stack FactBox, where a new line is added to the top. This
indicates the position of the C/AL code in the current call.

6. Add another breakpoint and continue to run the code.
a. Select the following line of code.

NewNo := GetNextNo(NoSeries.Code,NewDate,TRUE);

b. Press F9 to add a breakpoint.
c. Click Continue (or press F5). This continues the execution until

the next breakpoint is reached.

7. Step into and out of a function and view Watches.
a. Press F11 to step into the GetNextNo function. A new line is

added to the top of the Call Stack FactBox. It indicates the first
line in the GetNextNo function of the NoSeriesManagement
codeunit.

b. Press F10 two times.
c. Position the pointer over the SeriesDate variable in the first line in

the GetNextNo function until the tooltip appears.

12 - 61 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
d. In the tooltip, click the AddWatch icon to add a watch for the

SeriesDate variable.

e. Check the Watches FactBox. Verify that the
<Globals>.Rec.Fields.”No.” line indicates an <Out Of Scope>
value. Verify that the SeriesDate line contains a value of 01/23/14.

f. Click Step Out. Execution returns to the last line that is reached in
the InitSeries function.

8. Use the Call Stack and Watches FactBoxes.
a. Add a watch for the NewNo parameter.

b. Verify that the value of the NewNo parameter is blank.
c. Press F10.
d. Verify that the NewNo parameter in the Watches FactBox

contains the value that is assigned from a number series.

e. Verify that the SeriesDate variable is out of scope.
f. In the Call Stack FactBox, click the line for the OnInsert trigger in

the Seminar table. The Code FastTab updates and shows the
C/AL code in the Seminar table with a green arrow that indicates
the line where the InitSeries function of the
NoSeriesManagement codeunit was called.

g. Verify that the <Globals>.Rec.Fields.”No.” line shows the value for
the No. field that was assigned from the number series.

 Note: The No. field is in the scope of the OnInsert trigger of the Seminar
table. This is lower in the Call Stack FactBox. It contains the same value as the
NewNo parameter in scope of the InitSeries function, because the No. field was
passed by reference to the NewNo parameter of the InitSeries function.

h. Verify that the NewNo line shows an <Out Of Scope> value.

 Note: The NewNo parameter is in scope for the InitSeries function and is
not known in the scope of the OnInsert trigger that is currently shown in the
Debugger page.

9. End debugging.

a. Click F5 to continue running the code. The Debugger switches to
the “Waiting for break” mode.

b. Focus the Seminar Card page. The No. field on the Seminar
Card page shows the value that was assigned from the number
series.

c. Close the Debugger page.
d. Close the Session List page.

12 - 62 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging

Module Review
Module Review and Takeaways

Unit testing functionality of Microsoft Dynamics NAV 2013 includes many features
to fully automate testing of code and avoid regression issues. Test codeunits
contain test functions. Test functions contain code that simulates transactions or
user activities, and validates the application functionality against the design goals.
When they are executed, test codeunits report SUCCESS or FAILURE. This indicates
whether the tested functionality behaves as expected. Handler functions replace
user interactions, such as confirmation dialog boxes, or modal pages. Test pages
can simulate the whole user interface and most types of interaction with the user,
such as calling an action, drilling down on a field in a page, or inserting a new row
in a subpage on a document. Test runner codeunits automate the running of test
codeunits and enable you to control which tests are executed, and which tests
collected test results for logging or integrating with test management solutions.

Debugger provides the functionality to analyze the code execution, follow the
code line by line as it runs, and inspect the variables to determine the causes of
bugs, errors, or other types of issues.

Test Your Knowledge

Test your knowledge with the following questions.

1. Which type is not a valid codeunit subtype in Microsoft Dynamics NAV 2013?

() Normal

() Test

() TestRunner

() UnitTest

2. What kind of functions can test codeunits contain?

12 - 63 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013
3. You can define ConfirmHandler functions only in test runner codeunits.

() True

() False

4. The OnBeforeTestRun and OnAfterTestRun triggers are defined automatically
for every test runner codeunit when you set the Subtype property to
TestRunner.

() True

() False

5. Which C/AL statement can you use in test code to make sure that the
following statement fails?

6. When you set the TransactionModel of a test function to AutoRollback, what
happens if the test code run from that function encounters a COMMIT
function call?

7. Which C/AL data type do you use to simulate user interaction with a page in
test code?

12 - 64 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
8. You can debug web services sessions in Microsoft Dynamics NAV 2013.

() True

() False

9. What is a conditional breakpoint and how do you define it?

12 - 65 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

Test Your Knowledge Solutions

Module Review and Takeaways

1. Which type is not a valid codeunit subtype in Microsoft Dynamics NAV 2013?

() Normal

() Test

() TestRunner

(√) UnitTest

2. What kind of functions can test codeunits contain?

MODEL ANSWER:

Test codeunits can contain normal, test, and handler functions.

3. You can define ConfirmHandler functions only in test runner codeunits.

() True

(√) False

4. The OnBeforeTestRun and OnAfterTestRun triggers are defined automatically
for every test runner codeunit when you set the Subtype property to
TestRunner.

() True

(√) False

5. Which C/AL statement can you use in test code to make sure that the
following statement fails?

MODEL ANSWER:

ASSERTERROR

6. When you set the TransactionModel of a test function to AutoRollback, what
happens if the test code run from that function encounters a COMMIT
function call?

MODEL ANSWER:

A run time error occurs.

12 - 66 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Testing and Debugging
7. Which C/AL data type do you use to simulate user interaction with a page in

test code?

MODEL ANSWER:

TestPage

8. You can debug web services sessions in Microsoft Dynamics NAV 2013.

(√) True

() False

9. What is a conditional breakpoint and how do you define it?

MODEL ANSWER:

A conditional breakpoint breaks the execution only if the Boolean expression
defined on it evaluates to TRUE. You define a condition for a breakpoint by
clicking the Set/Clear Condition action in the Debugger.

12 - 67 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development In Microsoft Dynamics® NAV 2013

12 - 68 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

	Module 12: Testing and Debugging
	Module Overview
	Objectives

	Prerequisite Knowledge
	Test-driven Development Fundamentals
	Characteristics of a Good Unit Test
	Benefits of Test-Driven Development

	Test Features
	Test Codeunits
	Test Functions
	Transaction Model for Test Functions
	Demonstration: Creating and Running a Test Codeunit
	Demonstration Steps

	ASSERTERROR Statement
	Demonstration: Using ASSERTERROR in Test Functions
	Demonstration Steps
	TestChangeReleasedSalesOrder Function

	Handler Functions
	HandlerFunctions Property

	Demonstration: Using Handler Functions to Automate User Interaction
	Demonstration Steps

	Testing Pages
	Test Pages and the TransactionModel Property
	Accessing Fields on Test Pages
	You access the fields on a test page by using the dot notation. For example, if you have a test page variable named CustomerCard that represents the Customer Card page, then to access the Name field on the test page, you write CustomerCard.Name in you...
	Accessing Page Parts and Subpages
	Filtering Data on Test pages
	Invoking Actions on Test Pages
	Navigating Among Records

	Demonstration: Using a TestPage Variable in a Test Codeunit
	Demonstration Steps

	Test Runner Codeunits
	OnBeforeTestRun Trigger
	OnAfterTestRun Trigger

	Demonstration: Creating and Running a Test Runner Codeunit
	Demonstration Steps

	Testing Seminar Management
	Solution Design
	Solution Development
	Test Framework
	Specific Test Codeunits

	Lab 12.1: Create Seminar Management Unit Tests
	Scenario
	Exercise 1: Import the Testing Framework
	Exercise Scenario
	Task 1: Import the Objects
	High Level Steps
	Detailed Steps

	Exercise 2: Create the Unit Tests
	Exercise Scenario
	Task 1: Master Data Unit Tests
	High Level Steps
	Detailed Steps

	Task 2: Seminar Registration Unit Tests
	High Level Steps
	Detailed Steps

	Task 3: Dimension Integration Unit Tests
	High Level Steps
	Detailed Steps

	Exercise 3: Run Unit Tests
	Exercise Scenario
	Task 1: Run the Tests
	High Level Steps
	Detailed Steps

	Task 2: Check Test Statistics
	High Level Steps
	Detailed Steps

	Task 3: Check the Test Register
	High Level Steps
	Detailed Steps

	Debugging
	Activating the Debugger
	Debugger Page
	Breakpoints
	Break Rules
	Breakpoints in Code
	Breakpoints Overview
	Conditional Breakpoints

	Code Tracking
	Variables and Watches
	Call Stack

	Running Code
	Demonstration: Using the Debugger
	Demonstration Steps

	Module Review
	Module Review and Takeaways
	Test Your Knowledge

	Test Your Knowledge Solutions
	Module Review and Takeaways

