
MODULE 4: POSTING

Module Overview
Transactional systems, such as Microsoft Dynamics NAV 2013, record past
business events or transactions, and must safeguard the integrity of that
information. Some examples of these business events are as follows:

• Purchases from vendors

• Sales to customers

• Consumption of raw materials in production

• Output of finished goods in production

• Usage of resources

• Payments from bank accounts to vendors

To make sure that information about past business events is always intact,
Microsoft Dynamics NAV 2013 distinguishes between working data and posted
data. Working data represents information about current or future transactions.
Users can insert, change, or delete that information as needed. Posted data
represents information about past business transactions. Users cannot insert,
change, or delete that information. Posting is a process that moves the data from
working tables into posted tables.

All functional areas of Microsoft Dynamics NAV 2013 provide very similar features
for enabling users to enter the transaction data and process it. This similarity exists
at all levels: user interface, data model, and process level. When you develop a
new functional area, you must follow the standard concepts as much as possible
to maintain a consistent user experience across the application.

Working tables in Microsoft Dynamics NAV 2013 consist of the following:

• Document tables

• Journal tables

Posted tables in Microsoft Dynamics NAV 2013 consist of the following:

• Posted document tables

• Ledger entry tables

• Register tables

There are two posting routines that move the data between these tables:

• Document posting routine

• Journal posting routine

4 - 1 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Each of these routine comprises several codeunits.

The Seminar module now contains master tables and document tables to create
registrations. The next step is to use the registration information to create ledger
entries for seminars through posting routines.

Objectives

The objectives are:

• Explain the working and posting tables.

• Explain posting routines and their relationships.

• Create journal posting routines.

• Create document posting routines.

• Present the best practices for documenting changes to existing
objects.

• Program for low impact on the application.

4 - 2 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

Prerequisite Knowledge
Before you begin to work on posting, it is important to know about journal tables,
ledger tables, and some of the elements that are involved in posting.

Journal, Ledger and Register Tables and Pages

Journal tables, ledger tables, and posting codeunits are at the core of every
posting process in Microsoft Dynamics NAV 2013.

Journal Tables

A journal is a temporary work area for the user. Users can insert, change, and
delete all records in journals. A journal consists of three tables.

Table Remarks

Journal Template Journal templates represent transaction types,
such as sales, cash receipt, inventory, or
reclassification. There is typically only one
journal template per transaction type, but users
may decide to define more.

Journal Batch Batches may represent various logical subtypes
of the same transaction type. For example,
users may have different cash receipt batches
for different bank accounts or customer groups,
or different inventory batches for different
locations or item types. Sometimes, batches
represent different users who use them to
physically separate transactions that are
entered by different users.

Journal Line Journal line tables store the information about
the transaction itself.

Lines belong to batches, and batches belong to templates. The “Journal Structure”
figure shows how journal tables are related to one another.

4 - 3 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

FIGURE 4.1: JOURNAL STRUCTURE

The Journal Page

The primary page to enter information into journals is called by the transaction
type, and followed by the word Journal, for example: Sales Journal, Cash Receipt
Journal, Resource Journal, or Consumption Journal. The page is of type
worksheet, and uses Journal Line as its source table.

The primary key of a Journal Line table is a composite key, and consists of the
Journal Template Name, Journal Batch Name and Line No. fields. The user
never enters information into any of these fields directly. Instead, the Journal
page sets the field according to the following rules:

• The Journal page that the user accesses sets the Journal Template
Name field. If there are more templates for the same Journal page,
then users must select the template when they start the Journal
page. They cannot change the template unless they close and then
reopen the Journal page.

• The journal page also sets the Journal Batch Name field. However,
the user may change the Batch Name field at the top of the page.

• The Line No. field keeps each record in the same template and batch
unique. The batch page sets the Line No. field automatically through
the AutoSplitKey property.

The Journal page lets users enter and edit the journal lines that will later be
posted into ledger tables. As long as the lines are in the journal, users can freely
change or delete them, and they have no effect until the user posts the journal.
Users can even leave the lines in the journal table indefinitely.

4 - 4 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Ledger Tables

At the core of most functional areas in Microsoft Dynamics NAV 2013, there is a
ledger table that keeps transaction history for that functional area. The ledger
table is always called Ledger Entry. The Ledger Entry table is noneditable. Records
in it are permanent and users cannot delete or change them, except in specific
situations and by using special objects. You also cannot insert the entries directly
into a ledger table. You can insert new entries into a ledger table only through a
posting routine that moves the data from journal tables to ledger tables. After you
post, the lines that were posted are deleted from the journal tables.

The primary key of every ledger table is the Entry No. field. There are many
secondary keys, and most are compound. These keys are used by reports, pages,
and FlowFields.

For most functional areas, there is a link between the Ledger Entry tables and the
General Ledger Entry table. Because of this link, any modifications that you make
directly to a ledger table can cause serious problems. Usually, the only way to
undo such changes is to restore the most recent backup of the database.

The Ledger Entries Page

A page that shows the records from the Ledger Entry table is a List page, and is
named after the ledger, followed by the words Ledger Entries, for example,
General Ledger Entries, Customer Ledger Entries or Item Ledger Entries.

The Ledger Entries pages are typically noneditable, and do not allow insertions,
modifications, or deletions. However, depending on the transaction type, they
may allow certain changes that are typically related to business process specifics.
For example, the Customer Ledger Entries and Vendor Ledger Entries pages
allow changes to certain fields to provide putting entries on hold, or to manage
the payment discounts after posting.

 Note: You do not protect the Ledger Entry tables directly by making the
table fields noneditable. Instead, you must make sure that every page protects the
table against unauthorized changes according to the business process requirements
for the ledgers.

The Register Table and Page

Each functional area that includes a ledger also includes a register. A register is a
table that keeps the history of all transactions. It is the core of the audit trail for
the functional area. The table is always named after the ledger, followed by the
word Register, for example G/L Register, Item Register, or Resource Register.
The primary key is always the field No.

4 - 5 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
The Register table keeps the summary for the transaction, whereas the Ledger
Entry table keeps the details for the transaction. There may be multiple ledger
entries for each register line. For each transaction, the Register table always keeps
track of the first and the last Ledger Entry record that is posted by the transaction.
The Register table also keeps track of the Creation Date, Source Code, User ID
and Journal Batch Name for the transaction.

For each Register table, there is a page that shows the records from the table.
This is always named after the ledger, followed by the word Registers. The
Registers page is a noneditable list page for the Register table, and always has
the same name as its source table.

Every Registers page provides the quick means to show the ledger entries that
result from the selected transaction in the register. The action is called after the
ledger or the sub-ledger that it shows. For example, in the Item Registers page,
there are Item Ledger, Phys. Inventory Ledger, Value Entries, and Capacity
Ledger actions. Each of these actions runs a separate codeunit that receives the
Register record, filters the ledger entries according to the From Entry No. and
To Entry No. fields, and then shows the appropriate Ledger Entries page. This
codeunit is always called after both the register page, and the ledger it shows. For
example, clicking the Item Ledger action calls the Item Reg.-Show Ledger
codeunit.

Journal Posting Codeunits

For each journal type, there is a group of codeunits that is responsible for moving
the data from the journal tables into the ledger tables. These codeunits also make
sure that all the data that is moved into the ledger is correct for each line and for
the entire table. That group of codeunits is frequently called a posting routine. A
posting routine performs the following tasks:

• Takes journal lines and checks them.

• Converts journal lines to ledger entries.

• Inserts journal lines into the ledger table.

• Makes sure that all posted transactions are consistent.

Although there are many types of posting routines in Microsoft Dynamics NAV
2013, they all follow the same data structure and architectural principles.

The Post Line Codeunit

The primary codeunit that does the work of posting for a particular journal is
named after the journal name followed by the words Post Line, for example Gen.
Jnl.-Post Line or Res. Jnl.-Post Line. The primary goal of a Post Line codeunit is to
transfer the information from the Journal Line table into the Ledger Entry table,
although it also performs other functions, such as calculations and data checking.

4 - 6 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

 Note: Depending on the business process that it handles, the Post Line
codeunit may even post to multiple ledgers at the same time. For example, the Gen.
Jnl.-Post Line codeunit posts information into general, customer, vendor, bank
account, and fixed asset ledgers.

Journal Posting Companion Codeunits

For each type of posting routine (General Ledger, Item, Resource, and so on), the
Post Line codeunit has two companion codeunits.

Codeunit Purpose

Check Line Checks each journal line before it is posted. It
receives the journal line as a parameter, and
never reads it from the database. Check Line
may read the related data from the database,
however, it never writes any data back to the
database. It checks for any conditions that may
cause the posting to fail. It runs before the
posting process starts to make sure that the
posting process does not begin if there are any
errors.
The posting process in the Post Line codeunit
performs many write operations. It also adds
many locks, some of them explicit, so that the
Check Line guarantees the highest possible
concurrency between transactions. The posting
process causes the problematic journal to fail
before any locks are added.
This codeunit is called by the Post Batch
codeunit, but also by the Post Line codeunit.

Post Batch The Post Batch codeunit repeatedly calls the
Check Line codeunit to check all lines. If this
check succeeds, then Post Batch repeatedly
calls the Post Line codeunit to post all lines. The
Post Batch codeunit is the only one that
actually reads or updates the Journal table.
The other codeunits use the Journal record
that is passed into them. In this manner, you
can call the Post Line codeunit directly from
another posting codeunit without having to
update the Journal table. The Post Batch
codeunit is called only when the user clicks
Post within the Journal page.

4 - 7 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
By convention, the last digits of the object ID numbers of the posting codeunits
are standardized.

Posting Codeunit Ends with Example

Check Line 1 11 Gen. Jnl.-Check Line

Post Line 2 12 Gen. Jnl.-Post Line

Post Batch 3 13 Gen. Jnl.-Post Batch

These codeunits do not require any user input. This is because they can be called
from other objects that are part of larger batch processes, or from outside
Microsoft Dynamics NAV using web services. In these situations, the user interface
is either not desirable or not possible. The Post Batch codeunit displays a dialog
that shows the posting progress and lets the user cancel the posting.

Journal Posting Starter Codeunits

Posting is a complex, and frequently time-consuming process that requires
exclusive access to the data. Therefore, it must run without interruption so that
posting codeunits do not allow any kind of user interaction. If there is any input
that must be provided to the posting process, users must provide that input at the
very beginning of the process.

Any user interaction during posting is handled by another set of codeunits:

Codeunit Description Object ID ends
with

Example

Post Asks the user whether to
post, and then calls Post
Batch.

1 231, Gen.
Jnl.-Post

Post + Print Asks the user whether to
post, then calls Post
Batch, and then calls the
Register Report.

2 232 Gen.
Jnl.-
Post+Print

Batch Post Asks whether to post the
selected batches and
then repeatedly calls
Post Batch for each
selected batch.
Users can run this
codeunit only from the
Journal Batches page.

3 233, Gen.
Jnl.-B.Post

4 - 8 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Codeunit Description Object ID ends

with
Example

Batch Post + Print Confirms that the user
wants to post the
selected batches, then
calls Post Batch for each
selected batch, and then
calls the Register Report.

4 234, Gen.
Jnl.-B.
Post+Print

The Journal Posting Process

The journal posting process involves one of the following starter codeunits:

• Post Batch

• Check Line

• Post Line

These three codeunits are the most important components of any posting routine,
because they run the bulk of the business logic of transaction posting for a
functional area.

Check Line Codeunit

As its name suggests, the Check Line codeunit checks the Journal Line that is
passed to it. It does so without reading from the database server.

Before checking any of the fields, this codeunit makes sure that the journal line is
not empty. It does so by calling the EmptyLine function in the Journal table. If
the line is empty, the codeunit skips it by calling the EXIT function.

The last thing that the codeunit verifies is the validity of the dimensions for the
journal line. The codeunit does so by calling the DimensionManagement codeunit.
If the codeunit does not stop the process with an error, then the journal line is
accepted, and the posting continues.

Post Line Codeunit

The Post Line codeunit is responsible for actually writing the journal line to the
ledger. It only posts one journal line at a time, and it does not examine previous
or upcoming records.

The function that runs the bulk of work in this codeunit is the Code function.

The OnRun trigger of the Post Line codeunit is usually never called, but it was
called in earlier versions of the product, and is retained for backward
compatibility. Instead, other codeunits call the RunWithCheck function that first
calls the Check Line codeunit, and then calls the Code function.

4 - 9 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Like the Check Line codeunit, this codeunit skips empty lines by exiting. This
guarantees that empty lines are not inserted into the ledger. The first thing the
codeunit does if the line is not empty is to call the Check Line codeunit to verify
that all required journal fields are correct.

Next, the codeunit checks the important table relations. This requires reading the
database (by using the GET functions). This is why you do it here instead of in
Check Line.

Before writing to the ledger, the Post Line writes to the register. The first time that
the program runs through the Post Line codeunit, it inserts a new record in the
Register table and sets the From Entry No. field to link to the first entry that is
posted for the transaction. In every successive run through the Post Line codeunit,
the program changes the record by incrementing the To Entry No. field.

Then the codeunit takes the next entry number and the values from the journal
line and puts them into a ledger record. Finally, it can insert the ledger record.

The last thing that the codeunit does is to increment the variable that holds the
next entry number by one. Therefore, when the codeunit is called again, the next
entry number is ready.

Post Batch Codeunit

The Post Batch codeunit is responsible for posting all the lines that belong to the
same template and batch. Only one record variable for the journal is actually
passed to this codeunit. However, the codeunit starts by filtering down to the
template and batch of the record that is passed in. Then it determines how many
records are in the batch. If there are no records, the codeunit exits without an
error. The calling routine then notifies the user that there is nothing to post.

 Note: The Post Batch codeunit always respects any filters that the user has set
on the Journal Line table in the Journal page. This allows users to only post
sections of a batch, instead of the whole batch.

The Post Batch codeunit can then begin checking each journal line in the batch by
calling the Check Line codeunit for each line. As soon as all lines are checked, they
can be posted by calling the Post Line codeunit for each line. By then, the
codeunit has looped through all the records two times: one time for the Check
Line codeunit, and again for the Post Line codeunit.

When the Check Line codeunit checks the validity of a single line, the Post Batch
codeunit is responsible for checking the interrelation and consistency of all the
lines that are being posted. For example, the Gen. Jnl-Post Batch codeunit also
makes sure that the journal lines balance to zero. If a similar check is necessary, it
usually occurs as a separate loop through the lines after the Check Line codeunit
and before the Post Line loop.

4 - 10 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
The codeunit may perform other functions, depending on the Journal Template.
For recurring journals, the journal lines are updated with new dates based on the
date formula. When a recurring journal line is posted, the codeunit must check the
Description field and the Document No. field and replace any parameters with
the correct values, for example %1 = day, %2 = week, and %3 = month.

If the template is not recurring, the codeunit deletes all the journal lines after they
are successfully posted.

The “Post Batch Process and Data Flow” diagram outlines the steps in the Posting
Routine when the Post Batch codeunit is called.

The following diagram shows the logic of a Post Batch codeunit.

FIGURE 4.2: POST BATCH PROCESS AND DATA FLOW

4 - 11 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Example Posting Routine

For a better understanding of how posting routines are written, you may review
one of the simpler posting routines, such as the Resource Journal posting routine.

Check Line

Design the Res. Jnl.-Check Line codeunit (211). Notice that the OnRun trigger gets
the General Ledger Setup record, and then calls the RunCheck function. The
RunCheck function performs the following required checks:

• If the line is empty, the codeunit skips additional checking and exits
without error.

• It checks if the posting date is within the allowed posting date range.

• If the line is related to a time sheet, the RunCheck function performs
the time sheet checks by calling the Time Sheet Management
codeunit.

• It calls functions from the DimensionManagement codeunit to check
the dimension combinations and dimension posting rules.

If this codeunit completes without error, then the posting routine continues.

Post Line

Design the Res. Jnl.-Post Line codeunit (212). Notice that the OnRun trigger gets
the General Ledger Setup record, and then calls the RunWithCheck function.
The RunWithCheck function then calls the Code function. Most of the posting
work is performed in the Code function.

Like the Check Line codeunit, the Post Line codeunit also skips empty lines by
exiting. This guarantees that empty lines are not inserted into the ledger. If the
line is not empty, it calls Check Line to verify that all required journal fields are
correct.

Next, the codeunit gets the next entry number from the Resource Ledger Entry
table to be used with the resource register table. Before writing to the ledger, the
Post Line codeunit writes to the register. On the first run, the codeunit adds a new
record to the Register table. For every successive run through the Post Line
codeunit, it increments the To Entry No field.

Then the codeunit takes the next entry number and the values from the journal
line and puts them into a Resource Ledger Entry record. Finally, it inserts the
Resource Ledger Entry record.

4 - 12 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Post Batch

Design the Res. Jnl.-Post Batch codeunit (213). This codeunit is responsible for
posting the Resource Template and Resource Batch that is passed to it.

The codeunit starts by filtering to the template and batch of the Resource
Journal Line record. If no records are found in this range, the Post Batch codeunit
exits. The calling routine (codeunit 271, 272, 273, or 274 in this case) notifies the
user that there is nothing to post.

The Post Batch codeunit then loops and checks each journal line in the recordset
by calling the Check Line codeunit. As soon as all lines are checked, they enter
another loop which posts the records by calling the RunWithCheck function of
the Post Line codeunit for each line.

Unlike the General Journal, there are no interdependencies between Resource
Journal lines. Therefore no checks, such as checking the balance must be done.

Finally, this codeunit calls the UpdateAnalysisView codeunit to update any
Analysis Views that require updates on posting.

Document Posting Routines

In Microsoft Dynamics NAV 2013, documents provide a simple way to process
complex transactions. A document frequently combines multiple transactions into
a single transaction. These transactions would be multiple individual transactions if
posted from separate journals. By combining these transactions, documents not
only simplify work for users, but also guarantee more transactional integrity than
journals. This is known as cross-functional transactional integrity.

To better understand how a document posting routine works and what its
components are, consider the following example of a sales order with three sales
lines:

• Line 1: Selling a G/L account – for example, this line may add a
surcharge or freight

• Line 2: Selling an item – for example, a computer

• Line 3: Selling a resource – for example, time that an
employee spends custom building the computer

When the user posts the document, the program generates an entry that debits
the Accounts Receivable Account in the general ledger (G/L). Each document line
generates a separate G/L entry for that line. At the same time, the document
posting routine generates an entry for the Item and Resource journals, and the
General Journal for the Customer.

4 - 13 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
When these journal entries are posted, they are posted as if the user had entered
them into the three separate journals. The biggest difference is that the journal
records are posted individually. This enables the Sales-Post routine to bypass the
Post Batch codeunit and call the Post Line codeunit directly.

In this example, the document posting routine calls the Gen. Jnl.-Post Line
codeunit at least two times: one time for the Item Jnl.-Post Line codeunit, and one
time for the Res. Jnl.-Post Line codeunit.

A sales document is posted primarily by the Sales-Post codeunit (80). The whole
batch of sales documents can be posted by calling the Batch Post Sales Invoices
report (297). Be aware that this report is for invoices only. There is a separate
report for each document type, such as orders or credit memos.

These reports call the Sales-Post codeunit repeatedly for each document. For this
to work, the Sales-Post codeunit must not interact with the user. In fact, the Sales-
Post codeunit is never called directly by a page. The page calls the Sales-Post
(Yes/No) codeunit (81), the Sales-Post + Print codeunit (82), or one of the reports
that was mentioned previously. These other codeunits or reports in turn interact
with the user. This is usually to obtain user confirmation before posting, and then
to call the Sales-Post codeunit as appropriate.

The “Sales-Post Data Flow “ diagram shows the data flow of the Sales-Post
codeunit when a G/L Account, an Item, and a Resource line are included in a sales
invoice.

FIGURE 4.3: SALES-POST DATA FLOW

4 - 14 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Document Posting Codeunit

Codeunit 80 posts sales documents. When a user ships and invoices a sales order,
much of the work is performed in codeunit 80. This codeunit performs the
following tasks:

• Determines the document type and validates the information on the
sales header and lines.

o The codeunit determines the posted document numbers and
updates the header.

o This section ends with a COMMIT function call.

• Locks the appropriate tables.

• Inserts the Shipment Header and Invoice or Credit Memo Header.

• Clears the InvPostingBuffer, a temporary table that is based on the
Invoice Post. Buffer table.

• Within the main REPEAT loop, it iterates through all sales line, and
checks each line with its matching Sales Shipment Line (if the line is
previously shipped).

o If the line type is Item or Resource, it is posted through the
appropriate journal. The line is then added to the posting buffer.
When you add to the posting buffer, a new line may be inserted,
or you can update a current line. The buffer makes sure that there
are as few G/L Entry records as possible that result from a single
transaction. Therefore, it always combines lines that have the
same values for the G/L Account No. field, the same dimension
values, the same posting groups, and some more important fields.

o If the line is related to a job, codeunit 80 posts a journal line
through the Job Journal.

o If there is no shipment line, codeunit 80 inserts one.

o Finally, codeunit 80 copies the Sales Line to the Invoice Line or
Credit Memo Line (the posted tables).

• Posts all entries in the Posting Buffer temporary table to the
General Ledger table.

o These are the Credits that are created from the sale of the lines.

o Then the codeunit can post the Debit to the General Ledger.

4 - 15 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
o The customer entry is made to the Sales Receivables Account.

o The routine then checks whether there is a balancing account for
the header. This corresponds to an automatic payment for the
invoice.

• Updates and deletes the Sales Header and Lines and commits all
changes.

Documentation in Existing Objects

When you make changes to an existing object, enter a note in the Documentation
trigger, in the same manner as for new objects that were discussed in earlier
modules. The note should contain a reference number, the date the modification
is completed, the name of the developer who made the modification, and a short
description of the change.

Following is an example taken from the Resource table, with notes from Module
2, Lab 1.

Documentation Trigger Example

CSD1.00 - 2012-06-15 - D. E. Veloper

 Module 2 - Lab 1

 - Added new fields:

 - Internal/External

 - Maximum Participants

Notice that documentation in an existing object resembles the documentation in
a new object. The details of these notes and the way that they are formatted can
vary from one developer to another. They may also be the subject of an
organization-wide set of standards. Understand that these notes are necessary to
keep track of the changes that are made to objects over the life span of the
objects in a Microsoft Dynamics NAV 2013 application.

Code Comments

Together with the general comments that are provided in the Documentation
trigger, it is important to provide comments in the code at the lines where a
change is made. Do this only when changing an existing object, not when you
create a new object.

The key is to mark the changed code with the same reference number as used in
the Documentation trigger of the object.

4 - 16 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
For example, mark a single changed line of code as follows.

Single Line Modification

//CSD1.00>

//CheckCustBlockage("Sell-to Customer No.",TRUE);

CheckCustBlockage("Sell-to Customer No.",FALSE);

//CSD1.00<

If you add or change a whole block of code, mark the change as follows.

Multiple Lines Modification

//CSD1.00>

//TESTFIELD("Document Type");

//TESTFIELD("Sell-to Customer No.");

//TESTFIELD("Bill-to Customer No.");

//TESTFIELD("Posting Date");

//TESTFIELD("Document Date");

CheckDocumentTypeFields("Document Type");

IF "Sell-to Customer No." <> "Bill-to Customer No." THEN

 CompareCustomerDimensions("Sell-to Customer No.","Bill-to Customer No.");

//CSD1.00<

When removing standard code, mark the removed lines as follows.

Code removal

//CSD1.00>

//SalesLine.SETFILTER(Quantity,'<>0');

//SalesLine.SETFILTER("Return Qty. to Receive",'<>0');

//CSD1.00<

4 - 17 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Never delete the original Microsoft Dynamics NAV 2013 code. The goal of code
comments is to preserve the original code, even when you change the business
logic or remove the business logic. Preserving the original code performs the
following three important tasks:

• It shows the original code before any customization.

• It makes any changes more obvious in the source code of the object.

• It streamlines the upgrade process by enabling the upgrade tools to
match the original code with the new version code.

 Note: Even though braces are a valid way to comment out multiple lines of
code, use them sparingly. Comments made with braces are not color-coded in
green, and are inconspicuous when you are viewing the code. Also, during upgrade
projects they make the changes less obvious than the changes that you make with
// comments.

Performance Issues

When you write large posting routines, it is important to program to maximize
performance. There are several steps to program a solution in Microsoft Dynamics
NAV that will improve performance.

Table Locking

Most of the time, you do not have to be concerned about transactions and table
locking when you develop applications in Microsoft Dynamics NAV Development
Environment, because the SQL Server adds necessary locks to affected tables as
soon as you start inserting, changing, or deleting data. However, there are some
situations when you must explicitly lock a table to guarantee process or
transaction integrity.

For example, suppose that in the beginning of a function, you read the data from
a table, and then later use that data to perform various checks and calculations.
Then, you write the record back to the database, based on the result of this
processing. The values that you retrieved at the beginning must be consistent with
the final data in the table. In short, other users must be unable to update the table
while a function is busy doing the calculations.

The solution is to lock the table at the beginning of the function by using the
LOCKTABLE function. This function locks the table until the write transaction is
committed or rolled back. This means that other users can read from the table.
However, they cannot write to it. Calling the COMMIT function unlocks the table.

4 - 18 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

 Note: The LOCKTABLE function does not necessarily lock the table. The SQL
Server may decide to lock only the rows that you read, or to escalate the locks to
greater levels, such as a page or even a table level. Regardless of whether the SQL
Server locks the table or only the sections of it, the LOCKTABLE function
guarantees data consistency until you either call the COMMIT function or roll back
the transaction.

Reducing Impact on the Server

Good code design minimizes the load on the server. There are several ways to
achieve this including the following:

• Try to use the COMMIT function as little as possible. This function is
handled automatically by the database for most circumstances.

• Use the LOCKTABLE function only when it is necessary. Remember
that an insert, change, rename, or delete function automatically locks
the table. So for most situations you do not have to lock the tables.

• Structure the code so that you do not have to examine the return
values of the INSERT, MODIFY, or DELETE functions. When you use
the return value, the server must be notified immediately to obtain a
response. Therefore, if they are not necessary, do not examine the
return values of INSERT, MODIFY, or DELETE functions.

• Use the CALCSUMS and CALCFIELDS functions when possible to
avoid examining records to total values. Use the
SETAUTOCALCFIELDS function when you must obtain the value of a
FlowField for every single row in a loop.

• Always avoid too many round trips to the server.

Reducing Impact on Network Traffic

Consider setting keys and filters, and then use MODIFYALL or DELETEALL
functions. These functions send only one command to the server, instead of
getting and deleting or changing many records one by one using the MODIFY
and DELETE functions.

Because CALCSUMS and CALCFIELDS can both take multiple parameters, you
can use these functions to perform calculations on several fields that have a single
function call.

4 - 19 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

Posting Seminar Registrations
In this section the client's functional requirements are analyzed and a solution is
designed and implemented.

Solution Design

The CRONUS International Ltd. functional requirements outline that when a
seminar is completed, users must be able to move the seminar registration
information into the transaction history, and disable any further modification of
this information. This requirement indicates that there must be a posting process
that is involved with seminar registrations. When you apply the customer’s
language to the terminology of Microsoft Dynamics NAV 2013, this requirement
states that users must be able to post the seminar registration information.

Another requirement further clarifies the customer’s business need for a
transaction history for seminars that must include the following:

• Details of participants, instructors, and rooms that are utilized during
the seminars

• Information about additional charges

This information will be the basis for seminar cost analytical and statistical
reporting. This indicates that the detailed information about posted transactions
must include all the information that is contained in the seminar registration
document. Microsoft Dynamics NAV terminology calls these transactions the
Ledger Entries.

The final requirement details how the seminar registration information must
integrate with the availability planning functionality for instructors and rooms. It
also must provide the basis for automatic invoicing of customers.

When seminar registration is posted, the resource ledger entries should be
generated for the instructor and room resources. The solution must provide the
registration posting functionality that creates transaction data from which users
can view history, analyze statistics, and create invoices.

When you introduce posting functionality, you must follow Microsoft Dynamics
NAV 2013 standard conceptual, data model, and user interface principles. This
means that you must provide at least the journal posting infrastructure that
consists of the following:

• Journal tables

• Ledger tables

• Register tables

• Journal posting codeunits

4 - 20 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Depending on the complexity of the processes that you must support, you may
have to extend the functionality to also include the following features:

• Posted document tables

• Document posting codeunits

The “Data Flow in Seminar Registration Posting” figure shows the entities that are
involved in the seminar registration posting process and the data flow between
them.

FIGURE 4.4: DATA FLOW IN SEMINAR REGISTRATION POSTING

Development

You must develop the tables, pages, and codeunits to enable the seminar
registration posting process and keep the transaction history. All tables, pages,
and codeunits must follow the standard Microsoft Dynamics NAV 2013 principles,
and must provide all functionality that users experience with other posting
routines and transactional history features.

4 - 21 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Tables

To support the posting process and to keep the transaction history for the
Seminar Management module, you must create the following new tables.

Table Remarks

123456718 Posted Seminar
Reg. Header

Holds the information for the completed
(posted) seminar. Takes the data from the
Seminar Registration Header table
during posting.

123456719 Posted Seminar
Reg. Line

Holds the detailed information for the
completed (posted) seminar. Takes the data
from the Seminar Registration Line table
during posting.

123456721 Posted Seminar
Charge

Holds charges that are related to the
completed (posted) seminar.

123456731 Seminar Journal
Line

Lets you post the seminar ledger entries.

123456732 Seminar Ledger
Entry

Keeps the transaction details for all posted
seminars.

123456733 Seminar Register Keeps the transaction log for posted
seminars.

You must also change the following tables.

Table Remarks

203 Res. Ledger Entry Add fields to link the resource ledger
entries to the seminars and to the posted
seminar registration documents.

207 Res. Journal Line Add fields to support posting of seminar
information during resource journal
posting.

242 Source Code Setup Add a field to support the audit trail source
code for the seminar registration
transaction history.

4 - 22 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Pages

The pages for the seminar registration posting and the navigation between them
reflect the relationships that are shown in the “Data Flow in Seminar Registration
Posting” diagram. Design the simplest pages first and then integrate them with
the more complex pages.

Add the Seminar Management group and the Seminar field to the Source Code
Setup page:

FIGURE 4.5: THE SOURCE CODE SETUP PAGE (279)

The Seminar Ledger Entries page displays the ledger entries:

4 - 23 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

FIGURE 4.6: THE SEMINAR LEDGER ENTRIES PAGE (123456721)

The “Seminar Registers Page” figure displays the registers that are created when
seminar registrations are posted.

FIGURE 4.7: THE SEMINAR REGISTERS PAGE (123456722)

4 - 24 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
The ”Posted Seminar Charges Page” image shows the charges that are related to a
posted seminar registration.

FIGURE 4.8: THE POSTED SEMINAR CHARGES PAGE (123456739)

The ”Posted Seminar Reg. Subform page” image shows the lines page for the
Posted Seminar Registration document page.

FIGURE 4.9: THE POSTED SEMINAR REG. SUBFORM PAGE (123456735) IN
PAGE PREVIEW

The “Posted Seminar Registration Page” image shows the posted seminar
registration document.

4 - 25 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

FIGURE 4.10: THE POSTED SEMINAR REGISTRATION PAGE (123456734)

The “Posted Seminar Reg. List Page” figure displays a list of posted seminar
registrations.

4 - 26 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

FIGURE 4.11: THE POSTED SEMINAR REG. LIST PAGE (123456736)

Codeunits

As in all journal postings, the journal posting codeunits check Seminar Journal
lines and post them. However, unlike some posting codeunits (such as General
Journal), a codeunit that posts a batch of these journal lines is not required
because posting batches is not required for this solution.

You must develop the following journal posting codeunits.

Codeunit Remarks

123456731 Seminar Jnl.-Check
Line

• Verifies the data validity of a seminar
journal line before the posting routine
posts it by doing the following:

• The codeunit checks that the journal
line is not empty and that there are
values for the Posting Date,
Instructor Resource No., and
Seminar No. fields.

• Depending on whether the line is
posting an Instructor, a Room, or a
Participant, the codeunit checks that
the applicable fields are not blank.

• The codeunit also verifies that the
dates are valid.

4 - 27 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Codeunit Remarks

123456732 Seminar Jnl.-Post
Line

Performs the posting of the Seminar
Journal Line. The codeunit creates a
Seminar Ledger Entry for each Seminar
Journal Line and creates a Seminar
Register to track which entries are created
during the posting

Change the Res. Jnl.-Post Line codeunit to make sure that the Seminar No., and
the Seminar Registration No. fields are recorded in the Res. Ledger Entry table.

Finally, you must develop the codeunits for the seminar registration document
posting.

Codeunit Remarks

123456700 Seminar-Post Posts the complete seminar registration
that includes the resource posting and
seminar posting.

• The codeunit transfers the comment
records to new comment records that
correspond to the posted document.
The codeunit also copies charges to
new tables that contain posted
charges.

• The codeunit creates a new Posted
Seminar Reg. Header record and
Posted Seminar Reg. Line records.

• The codeunit then runs the job journal
posting, and posts seminar ledger
entries for each participant, for the
instructor, and for the room.

• Finally, the codeunit deletes the
records from the document tables. This
includes the header, lines, comment
lines, and charges.

123456701 Seminar-Post
(Yes/No)

Interacts with users, and confirms that they
want to post the registration. If users
confirm the posting, the codeunit runs the
Seminar-Post codeunit.

4 - 28 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

Lab 4.1: Reviewing and Completing the Journal and
Ledger Tables

Scenario

Isaac is a junior developer working on the team that is implementing Microsoft
Dynamics NAV 2013 for CRONUS International Ltd. Isaac is in charge of
developing the base version of tables and user interface objects.

When he developed the seminar registration tables and pages, he only provided
you with the text file. This made it more difficult to review the contents of the
input file, because you had to review the text file by using a text-editing tool, such
as Notepad. You advised Isaac to always provide both the text and .fob versions of
the object import file to make the review process simpler.

Isaac created the seminar journal and ledger tables and pages, and delivered both
the .fob and text files that contain the objects. As Isaac’s supervisor, you now must
review the objects to make sure that they follow all Microsoft Dynamics NAV 2013
architectural principles and best practices. You must make any necessary
corrections to the tables, their properties and fields, and their code.

By this point, you should already be familiar with the basics of the Microsoft
Dynamics NAV 2013 Development Environment functions and features. Therefore,
the detailed instructions only give you descriptions of the actions that you must
do, instead of giving you detailed steps that are suitable for beginning users.

The following table contains some examples.

Instead of… … the instructions state
1. On the View menu, click

Properties.
2. In the Editable property, enter

“No”.
3. Close the Properties window.

1. Set the Editable property to
No.

1. On the View menu, click C/AL
Locals.

2. On the Return Value tab, in the
Return Type field, enter “Boolean”.

3. Close C/AL Locals.

1. Set the Return Value for the
function to return Boolean
type.

1. In Object Designer, click All. 1. View all objects in Object
Designer.

4 - 29 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Instead of… … the instructions state

1. In Object Designer, click Page.
2. Find and select the page

123456721, Seminar Ledger
Entries.

3. Click Design.

1. Design the page 123456721,
Seminar Ledger Entries.

1. On the File menu, click Save.

2. In the Save dialog window, make
sure that the Compiled check box
is selected, and then click OK.

3. Close the table.

1. Compile, save, and then close
the table.

 Note: This applies only to the concepts that were covered earlier. If there is a
new concept, the full detailed steps are provided. For any repeated concepts, only
the descriptive instructions are provided. If you are still unsure about the detailed
steps of a task, refer to the labs in earlier modules. If you have any questions, ask
your instructor.

Exercise 1: Reviewing the Import File Contents and
Importing the Objects
Exercise Scenario

Prior to importing objects, you should review the contents of the import file to
make sure that no existing objects will be overwritten. Start the review process by
importing a .fob file. This enables you to review the contents of the file before
saving objects to the database.

 Note: You may notice that the import file does not include the Seminar
Journal Template or Seminar Journal Batch table, or the Seminar Journal
page. This is because the Seminar Journal Template is always posted in the
background as a part of the document posting routine. For document posting, the
template and the batch are always undefined. Therefore the tables are not needed.

Provide only the Seminar Journal Template and Seminar Journal Batch tables.
Provide a Journal page if users must access the journal directly from the client.

4 - 30 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Task 1: Preview the .fob File Contents

High Level Steps
1. In Object Designer, open the Mod04\Labfiles\Lab 4.A - Starter.fob file

in the Import Worksheet.

2. Make sure that all listed objects are new.
3. Close the Import Worksheet.

Detailed Steps
1. In Object Designer, open the Mod04\Labfiles\Lab 4.A - Starter.fob file

in the Import Worksheet.
a. Open Object Designer.
b. On the File menu, click Import.
c. In the Import Objects dialog box, browse to Mod04\Labfiles\Lab

4.A - Starter.fob.
d. Click Open. The confirmation dialog box opens, and notifies you

that no conflicts were found.

e. Click No, to open the Import Worksheet, as instructed by the
dialog window.

2. Make sure that all listed objects are new.

a. Check the Action column for each row.
b. Make sure that the Action is set to Create for each row.

3. Close the Import Worksheet.

a. Click Cancel to close the Import Worksheet.

 Note: Even though you could click OK to complete the import, you want to
import the text file to review only the new objects and compile them manually.
When you import from a text file, any new objects are obvious because they are not
compiled.

Task 2: Import and Compile the Objects

High Level Steps
1. In Object Designer, import the Mod04\Labfiles\Lab 4.A - Starter.txt

file.
2. Select and compile the imported objects.

4 - 31 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Detailed Steps

1. In Object Designer, import the Mod04\Labfiles\Lab 4.A - Starter.txt
file.
a. In Object Designer, on the File menu, click Import.
b. In the Import Objects dialog box, browse to Mod04\Labfiles\Lab

4.A - Starter.txt file.
c. Click Open.

2. Select and compile the imported objects.

a. View all objects in Object Designer.
b. Filter the view to only show the uncompiled objects.
c. Compile the objects.

Exercise 2: Reviewing the Seminar Journal Line Table
Exercise Scenario

After importing the objects, you must make sure that all objects follow the best
practices and standard Microsoft Dynamics NAV 2013 principles. Start with the
Seminar Journal Line table.

Task 1: Review Table and Field Properties

High Level Steps
1. Clear all filters in Object Designer.
2. Make sure that all important standard journal fields are present in the

table 123456731, Seminar Journal Line table, and that the primary
key consists of the Journal Template Name, Journal Batch Name
and Line No. fields in the correct order.

Detailed Steps
1. Clear all filters in Object Designer.

a. In Object Designer, click View > Show All, or press SHIFT+CTRL
+F7.

2. Make sure that all important standard journal fields are present in the
table 123456731, Seminar Journal Line table, and that the primary
key consists of the Journal Template Name, Journal Batch Name
and Line No. fields in the correct order.

a. Design the table 123456731, Seminar Journal Line.

4 - 32 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
b. Make sure that the following fields are present in the table.

Field Type Remarks

Journal Template Name Code[10]

Journal Batch Name Code[10] This field must exist in all
journal line tables, but is
frequently located after all
the fields that describe the
transaction.

Posting Date Date Specifies the date for the
entry. This is the date that
the transaction occurred.

Document Date Date Specifies the date for the
document. By default this
equals the Posting Date.
Users can change this date
because the transaction
may be entered and
posted on different dates.

Source Code Code[10] Specifies the source for the
entry. Sources map directly
to journal templates.
Therefore, they all map to
transaction types. This field
forms the basis for the
audit trail that Microsoft
Dynamics NAV 2013 leaves
for every transaction. Users
cannot change this field.

Reason Code Code[10] Specifies the reason why
the entry was posted.
Users may change this
field.

 Note: There are many more fields in the table. Most of the other fields are
specific to the seminar journal transactions.

c. On the View menu, click Keys.
d. Verify that the first key in the list is “Journal Template

Name,Journal Batch Name,Line No.”

e. Close the Keys window.

4 - 33 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 2: Review Table Code

High Level Steps
1. Check whether the table contains the necessary functions for the

journal line tables.

2. Create and define the EmptyLine function. The function must return
a Boolean value.

3. Enter the code that sets the Document Date field to the value of the
Posting Date field when users edit the Posting Date field. Then save
and close the table.

Detailed Steps
1. Check whether the table contains the necessary functions for the

journal line tables.
a. In the C/AL Globals window, check the Functions tab to

determine whether there are any functions that were defined.

 Note: All Journal Line tables must contain the EmptyLine function, which is
called during posting to make sure that only non-empty lines are posted.

2. Create and define the EmptyLine function. The function must return
a Boolean value.
a. Create the EmptyLine function, configure its Return Value to

return Boolean type.

b. Open the C/AL Editor window to view the code for the table.
c. In the EmptyLine function trigger, enter the following code.

EXIT(

 ("Seminar No." = '')

 AND (Quantity = 0));

 Note: The number of conditions in the EmptyLine function depends on the
complexity of the journal transaction. For the seminar journal, if both the Seminar
No. and Quantity fields are undefined, then the journal line is considered empty.

4 - 34 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
3. Enter the code that sets the Document Date field to the value of the

Posting Date field when users edit the Posting Date field. Then save
and close the table.
a. In the Posting Date – OnValidate trigger, enter the following

code.

VALIDATE("Document Date","Posting Date");

b. Compile, save, and then close the table.

Exercise 3: Reviewing Other Tables
Exercise Scenario

After reviewing the Seminar Journal Line table and correcting the issues that
caused the gap between Isaac’s work and Microsoft Dynamics NAV 2013
standards and best practices, you want to review the remaining journal posting
tables: the Seminar Ledger Entry and Seminar Register tables.

Task 1: Review the Seminar Ledger Entry Table

High Level Steps
1. Review all the fields in the table 123456732, Seminar Ledger Entry

to note any differences between the actual Seminar Ledger Entry
table fields and the required set of fields.

2. Correct the issues that were noted in the previous step and save the
table.

Detailed Steps
1. Review all the fields in the table 123456732, Seminar Ledger Entry

to note any differences between the actual Seminar Ledger Entry
table fields and the required set of fields.
a. Design the table 123456732, Seminar Ledger Entry.
b. Compare the fields in the table with the following list.

Field No. Field Name Data Type Length

1 Entry No. Integer

2 Seminar No. Code 20

3 Posting Date Date

4 Document Date Date

5 Entry Type Option

6 Document No. Code 20

7 Description Text 50

8 Bill-to Customer No. Code 20

4 - 35 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Field No. Field Name Data Type Length

9 Charge Type Option

10 Type Option

11 Quantity Decimal

12 Unit Price Decimal

13 Total Price Decimal

14 Participant Contact No. Code 20

15 Participant Name Text 50

16 Chargeable Boolean

17 Room Resource No. Code 20

18 Instructor Resource No. Code 20

19 Starting Date Date

20 Seminar Registration No. Code 20

23 Res. Ledger Entry No. Integer

24 Source Type Option

25 Source No. Code 20

26 Journal Batch Name Code 10

27 Source Code Code 10

28 Reason Code Code 10

29 No. Series Code 10

30 User ID Code 20

 Note: Notice that the actual set of fields does not match this table.
Apparently, Isaac has only created the Seminar Ledger Entry table by copying the
Seminar Journal Line table. You now must correct these issues.

c. Note the following differences.

Issue Remarks

Entry No. This field does not exist. Instead, there are
the Journal Template Name and Line No.
fields.

No. Series This field does not exist. Instead, there is
the Posting No. Series field.

User ID This field does not exist.

4 - 36 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Issue Remarks

Primary key Primary key must only include the Entry
No. field.

2. Correct the issues that were noted in the previous step and save the
table.
a. From the list of fields, delete the Journal Template Name and

Line No. fields.

b. Create the Entry No. field as the first field in the table.
c. Create the User ID field as the last field in the table.
d. Compile, save, and close the table.
e. Design the Seminar Ledger Entry Table again.

 Note: When you add a new field to a table, you must close the table and then
reopen it before you can reference the field in the code.

f. Rename the Posting No. Series field to No. Series.
g. Set the Caption properties for any fields that you created or

changed to match the field’s Name.

h. Set the TableRelation property of the User ID field to relate to
the User Name field of the table User.

 Note: If you are unsure how to set the TableRelation property directly, click
the AssistEdit button for TableRelation, and establish the relation in the Table
Relation window.

i. Set the ValidateTableRelation and TestTableRelation properties of
the User ID field to No.

 Note: This guarantees that if the user is deleted from the database later, no
table relation tests fail.

j. Set the primary key to Entry No.
k. In the OnValidate trigger for the User ID field, enter the code

that calls the LookupUserID function of the User Management
codeunit.

UserMgt.LookupUserID("User ID");

 Note: Make sure that you define the UserMgt local variable for the User
Management codeunit.

4 - 37 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
l. Renumber the Field No. for all the fields incrementally from 1 to

28, starting with the Entry No. field and ending with the User ID
field.

m. Compile, save, and then close the table.

Task 2: Review the Seminar Register Table

High Level Steps
1. Review all the fields in the table 123456733, Seminar Register to

note any differences between the actual Seminar Register table
fields and the required set of fields.

2. Correct the issues that you noted in the previous step and save the
table.

Detailed Steps
1. Review all the fields in the table 123456733, Seminar Register to

note any differences between the actual Seminar Register table
fields and the required set of fields.

a. Design the table 123456733, Seminar Register.
b. Compare the fields in the table with the following list:

Field No. Field Name Data Type Length

1 No. Integer

2 From Entry No. Integer

3 To Entry No. Integer

4 Creation Date Date

5 Source Code Code 10

6 User ID Code 20

7 Journal Batch Name Code 10

c. Note the following issues:

Issue Remarks

No. The field does not exist. Instead, the field
Entry No. is there. By convention,
Register tables always have the primary
key field named No.

Journal Template Name This field is not necessary in the register.
The source of the transaction is kept in
the Source Code field.

4 - 38 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
2. Correct the issues that you noted in the previous step and save the

table.

a. Change the Name and the Caption properties for the Entry No.
field to “No.”

b. Delete the Journal Template Name field.
c. Renumber the Field No. for all the fields incrementally from 1 to

7, starting with the No. field and ending with the Journal Batch
Name field.

d. Compile, save, and then close the table.

Exercise 4: Customize the Source Code Setup Table and
Page
Exercise Scenario

In Microsoft Dynamics NAV 2013 every transaction must leave a clear and obvious
audit trail. The core feature for auditing transactions in Microsoft Dynamics NAV
2013 is the source codes feature. Source codes simplify locating transactions that
originated from a specific application function, such as a journal or a batch job.

When customizing Microsoft Dynamics NAV 2013 to include new posting routines
or batch jobs that result in posted entries, you must extend the Source Code
Setup table and page by using a field that identifies any new transaction type that
you are introducing. Then in your posting routines, you must make sure that you
use that field to identify the transactions that originated from that new feature.
Therefore, you establish an audit trail that is consistent with other features of
Microsoft Dynamics NAV 2013.

 Note: Transaction source codes can only be defined in the Journal Template
tables for journals, and in the Source Code Setup table for documents and batch
jobs. Every transaction carries the Source Code field, and this field is always taken
from either the appropriate Journal Template table, or from the Source Code
Setup table. Users can never change the Source Code field in any of the
transactions. The Source Code field is only shown in the Ledger Entries and
Register pages, never in journals or documents.

After reviewing all posting tables, you now must make sure that the Source Code
Setup table includes a source code configuration field for the seminar posting
routine. Then, you must add the same field to the Source Code Setup page.

4 - 39 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 1: Customize the Source Code Setup Table

High Level Steps
1. Add the Seminar field to the table 242, Source Code Setup.

Detailed Steps
1. Add the Seminar field to the table 242, Source Code Setup.

a. Design the table 242, Source Code Setup.
b. Add the following field.

No. Field Name Type Length Remarks

123456700 Seminar Code 10 Set the table
relation to the
Source Code
table.

c. Set the Caption property for the field to “Seminar”.
d. Compile, save, and then close the table.

Task 2: Customize the Source Code Setup Page

High Level Steps
1. Add the Seminar Management FastTab and the Seminar field to the

page 279, Source Code Setup.

Detailed Steps
1. Add the Seminar Management FastTab and the Seminar field to the

page 279, Source Code Setup.

a. Design the page 279, Source Code Setup.
b. Add the Seminar Management group control as the last group

control, just before the FactBoxArea container. Make sure that
you indent the group control at the same level as the other group
controls.

c. Add the Seminar field to the Seminar Management group. Make
sure that it is indented under the group.

d. Compile, save, and then close the page.

4 - 40 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

Lab 4.2: Creating Codeunits and Pages for Seminar
Journal Posting

Scenario

After you have reviewed all journal posting tables, and have completed the
necessary customizations and corrections, you are now ready to develop the
codeunits for the seminar journal posting routine. CRONUS International Ltd. only
requires document posting functionality, and did not request journal posting
functionality. Their users would find it unnatural to post any seminar registrations
through a journal. Therefore, you do not have to develop all journal posting
codeunits that you would normally provide if the customer required a full journal
user interface.

 Note: Even though the customer never requested it, you must provide the
journal posting functionality to enable documents to post ledger entries in a way
that is consistent with both best practices and the application standards that are
found in other functional areas.

The journal posting codeunits that you must develop are as follows.

Codeunit Remarks

Seminar Jnl.-Check Line This codeunit checks each line before
posting. You must always provide this
codeunit.

Seminar Jnl.-Post Line This codeunit posts each line. You must
always provide this codeunit.

Seminar Reg.-Show Ledger This codeunit shows the ledger entries
that result from a single journal posting.

No other journal posting codeunits are required because there is no user
interface. Also, you do not have to provide the Seminar Jnl.-Post Batch codeunit,
because document posting routines only call the Post Line codeunit.

4 - 41 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Exercise 1: Create the Seminar Jnl.-Check Line Codeunit
Exercise Scenario

Create the Seminar Jnl.-Check Line codeunit, which is called from the Seminar Jnl.-
Post Line codeunit. This codeunit must perform standard posting checks, such as
allowed posting dates, presence of all required fields, and so on.

 Note: If you are unsure how to structure the code in this codeunit, look at the
codeunit 211, Res. Jnl-Check Line.

Task 1: Create the Codeunit

High Level Steps
1. Create the codeunit 123456731, Seminar Jnl.-Check Line, and set the

properties to specify the Seminar Journal Line as the source table
for this codeunit.

Detailed Steps
1. Create the codeunit 123456731, Seminar Jnl.-Check Line, and set the

properties to specify the Seminar Journal Line as the source table
for this codeunit.
a. In Object Designer, show the codeunits, and then click New.

b. Save the new codeunit as 123456731, Seminar Jnl.-Check Line.
c. Set the TableNo property for the codeunit to “Seminar Journal

Line”.

Task 2: Declare the Variables and Text Constants

High Level Steps
1. Declare the global variables for the G/L Setup and User Setup tables,

and two date variables to keep track of allowed posting period
starting and ending dates.

2. Declare the text constants that display errors if entries are posted on
closing dates, or outside the allowed posting periods.

Detailed Steps
1. Declare the global variables for the G/L Setup and User Setup tables,

and two date variables to keep track of allowed posting period
starting and ending dates.
a. Declare the following global variables.

Name DataType Subtype

GLSetup Record General Ledger Setup

UserSetup Record User Setup

4 - 42 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Name DataType Subtype

AllowPostingFrom Date

AllowPostingTo Date

2. Declare the text constants that display errors if entries are posted on
closing dates, or outside the allowed posting periods.
a. Declare the following global text constants.

Name ConstValue

Text000 cannot be a closing date.

Text001 is not within your range of allowed posting
dates.

Task 3: Create the RunCheck Function

High Level Steps
1. Create the RunCheck function that receives a Seminar Journal Line

record by reference. Make sure that any code that you add to this
function later is enclosed in a WITH block for the record parameter
that is passed to the function.

2. From the OnRun trigger, call the RunCheck function.

Detailed Steps
1. Create the RunCheck function that receives a Seminar Journal Line

record by reference. Make sure that any code that you add to this
function later is enclosed in a WITH block for the record parameter
that is passed to the function.
a. In the C/AL Globals window, create a new function, and name it

RunCheck.
b. Define the following parameters for this function.

Var Name DataType Subtype

Yes SemJnlLine Record Seminar Journal Line

c. In the RunCheck function trigger, enter the following code.

WITH SemJnlLine DO BEGIN

END;

2. From the OnRun trigger, call the RunCheck function.

a. Enter the following code into the OnRun trigger.

RunCheck(Rec);

4 - 43 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 4: Add Code to the RunCheck Function

High Level Steps
1. Enter code in the RunCheck function trigger to test whether the

Seminar Journal Line is empty by using the EmptyLine function. If
the line is empty, the function exits.

2. Make sure that the Posting Date, Job No., and Seminar No. fields
are not empty.

3. Depending on the value of the Charge Type field, make sure that the
Instructor Code, Seminar Room Code, and Participant Contact
No. fields are not empty.

4. If the line is Chargeable, make sure that the Bill-to Customer No.
field is not blank.

5. Show an error if the Posting Date is a closing date.
6. Make sure that the Posting Date field is between the Allow Posting

From field and the Allow Posting To field values in the User Setup
table. If these fields are not defined there, then make sure that the
Posting Date field is between the Allow Posting From field and
Allow Posting To field values in the G/L Setup table.

7. Show an error if the Document Date field is a closing date, and then
save the codeunit.

Detailed Steps
1. Enter code in the RunCheck function trigger to test whether the

Seminar Journal Line is empty by using the EmptyLine function. If
the line is empty, the function exits.
a. In the WITH block of the RunCheck function trigger, enter the

following code.

IF EmptyLine THEN

EXIT;

 Note: For all other steps in this task, keep adding the code to the RunCheck
function trigger, just before the END of the WITH block.

4 - 44 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
2. Make sure that the Posting Date, Job No., and Seminar No. fields

are not empty.

a. Enter the following code.

TESTFIELD("Posting Date");

TESTFIELD("Instructor Resource No.");

TESTFIELD("Seminar No.");

3. Depending on the value of the Charge Type field, make sure that the
Instructor Code, Seminar Room Code, and Participant Contact
No. fields are not empty.
a. Enter the following code.

CASE "Charge Type" OF

 "Charge Type"::Instructor:

 TESTFIELD("Instructor Resource No.");

 "Charge Type"::Room:

 TESTFIELD("Room Resource No.");

 "Charge Type"::Participant:

 TESTFIELD("Participant Contact No.");

END;

4. If the line is Chargeable, make sure that the Bill-to Customer No.
field is not blank.
a. Enter the following code.

IF Chargeable THEN

 TESTFIELD("Bill-to Customer No.");

4 - 45 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
5. Show an error if the Posting Date is a closing date.

a. Enter the following code.

IF "Posting Date" = CLOSINGDATE("Posting Date") THEN

 FIELDERROR("Posting Date",Text000);

6. Make sure that the Posting Date field is between the Allow Posting
From field and the Allow Posting To field values in the User Setup
table. If these fields are not defined there, then make sure that the
Posting Date field is between the Allow Posting From field and
Allow Posting To field values in the G/L Setup table.
a. Enter the following code.

IF (AllowPostingFrom = 0D) AND (AllowPostingTo = 0D) THEN BEGIN

 IF USERID <> '' THEN

 IF UserSetup.GET(USERID) THEN BEGIN

 AllowPostingFrom := UserSetup."Allow Posting From";

 AllowPostingTo := UserSetup."Allow Posting To";

 END;

 IF (AllowPostingFrom = 0D) AND (AllowPostingTo = 0D) THEN BEGIN

 GLSetup.GET;

 AllowPostingFrom := GLSetup."Allow Posting From";

 AllowPostingTo := GLSetup."Allow Posting To";

 END;

 IF AllowPostingTo = 0D THEN

 AllowPostingTo := 12319999D;

END;

IF ("Posting Date" < AllowPostingFrom) OR ("Posting Date" > AllowPostingTo)
THEN

 FIELDERROR("Posting Date",Text001);

4 - 46 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

 Note: This check is a standard check in all journal posting codeunits. You can
take a look at the codeunit 211, Res. Jnl.-Check Line to see how it handles this
particular check.

7. Show an error if the Document Date field is a closing date, and then
save the codeunit.
 a. Enter the following code.

IF ("Document Date" <> 0D) THEN

 IF ("Document Date" = CLOSINGDATE("Document Date")) THEN

 FIELDERROR("Document Date",Text000);

b. Compile, save, and then close the codeunit.

Exercise 2: Create the Seminar Jnl.-Post Line Codeunit
Exercise Scenario

Now you must create the Seminar Jnl.-Post Line codeunit. This executes the core
work of the seminar journal posting routine, and creates the Seminar Ledger
Entry records for the journal posting transaction. This codeunit must handle the
following:

• Run the Seminar Jnl.-Check Line codeunit.

• Increase the Entry No. of the ledger entries it creates by one.

• Make sure that one register record is created and maintained
throughout the journal posting process to reflect the first and last
entry number.

• Insert the ledger entry, and populate it from the fields of the Seminar
Journal Line table.

 Note: You may want to view the codeunit 212, Res. Jnl.-Post Line to
understand the structure and the logic of that codeunit, and then apply the same
patterns and concepts in the Seminar Jnl.-Post Line codeunit.

4 - 47 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 1: Create the Codeunit

High Level Steps
1. Create the codeunit 123456732, Seminar Jnl.-Post Line, and set the

properties to specify the Seminar Journal Line as the source table
for this codeunit.

Detailed Steps
1. Create the codeunit 123456732, Seminar Jnl.-Post Line, and set the

properties to specify the Seminar Journal Line as the source table
for this codeunit.
a. In Object Designer, show the codeunits, and then click New.
b. Save the new codeunit as 123456732, Seminar Jnl.-Post Line.

c. Set the TableNo property for the codeunit to “Seminar Journal
Line”.

Task 2: Declare the Variables

High Level Steps
1. Declare the global variables for the Seminar Journal Line, Seminar

Ledger Entry, and Seminar Register tables. Then create a global
variable for the Seminar Jnl.-Check Line codeunit, and an integer
variable to keep track of the next available Entry No.

Detailed Steps
1. Declare the global variables for the Seminar Journal Line, Seminar

Ledger Entry, and Seminar Register tables. Then create a global
variable for the Seminar Jnl.-Check Line codeunit, and an integer
variable to keep track of the next available Entry No.

a. Declare the following global variables.

Name DataType Subtype

SeminarJnlLine Record Seminar Journal Line

SeminarLedgerEntry Record Seminar Ledger Entry

SeminarRegister Record Seminar Register

SeminarJnlCheckLine Codeunit Seminar Jnl.-Check Line

NextEntryNo Integer

4 - 48 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Task 3: Create the Functions

High Level Steps
1. Create the RunWithCheck and Code functions. The RunWithCheck

function receives a Seminar Journal Line as a parameter by reference.

2. Enter code in the appropriate trigger so that when the program runs
codeunit 123456732, Seminar Jnl.-Post Line, it runs the
RunWithCheck function for the current record.

3. Enter code in the RunWithCheck function trigger so that the
function copies the SeminarJnlLine from the SeminarJnlLine2 record,
runs the Code function, and then restores the SeminarJnlLine2 record
back from the SeminarJnlLine record.

Detailed Steps
1. Create the RunWithCheck and Code functions. The RunWithCheck

function receives a Seminar Journal Line as a parameter by reference.
a. In the C/AL Globals window, create the following functions:

RunWithCheck and Code.
b. For the RunWithCheck function, declare the following

parameters.

Var Name DataType Subtype

Yes SeminarJnlLine2 Record Seminar Journal Line

2. Enter code in the appropriate trigger so that when the program runs
codeunit 123456732, Seminar Jnl.-Post Line, it runs the
RunWithCheck function for the current record.

a. In the OnRun trigger, enter the following code.

RunWithCheck(Rec);

3. Enter code in the RunWithCheck function trigger so that the
function copies the SeminarJnlLine from the SeminarJnlLine2 record,
runs the Code function, and then restores the SeminarJnlLine2 record
back from the SeminarJnlLine record.
a. In the RunWithCheck function trigger, enter the following code.

SeminarJnlLine.COPY(SeminarJnlLine2);

Code;

SeminarJnlLine2 := SeminarJnlLine;

4 - 49 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

 Note: The SeminarJnlLine global variable is the main record variable that
must be available to all functions in the Seminar Jnl.-Post Line codeunit. By copying
it from the by-reference parameter, the whole codeunit has access to the same
Seminar Journal Line record.

When the Code function is finished, the by-reference parameter is set to the
SeminarJnlLine global variable to pass its latest state to the caller. This is a
necessary convention because the OnRun trigger is never called directly. It provides
backward compatibility only.

For this codeunit, it is present for convention reasons. The Rec variable is never
initialized, and cannot be used as the global Seminar Journal Line record variable
available throughout the codeunit. Therefore, the SeminarJnlLine is declared, and
the pattern that you see in the RunWithCheck function guarantees the same
behavior that you would usually achieve if you called the OnRun trigger directly,
and used the Rec variable instead.

Task 4: Add Code to the Code Function

High Level Steps
1. In the Code function, enter the WITH code block for the

SeminarJnlLine record variable.

2. Check whether the SeminarJnlLine is empty by using the EmptyLine
function. If it is empty, the function exits.

3. Runs the RunCheck function of the SeminarJnlCheckLine codeunit.
4. If the NextEntryNo is 0, lock the SeminarLedgEntry record, then set

the NextEntryNo to the Entry No. of the last record in the
SeminarLedgEntry table, if it can be found. Then, increase the
NextEntryNo by one.

5. If the Document Date is empty, the set the Document Date to the
Posting Date.

6. Create or update the SeminarRegister record, depending on
whether the register record was previously created for this posting.
When you create the register record, initialize all fields according to
their meaning.

7. Create a new SeminarLedgerEntry record, populate the fields from
the SeminarJnlLine record, set the Entry No. field to the
NextEntryNo variable, insert the new record, and then increment the
NextEntryNo variable by one. Finally, save the codeunit.

4 - 50 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Detailed Steps

1. In the Code function, enter the WITH code block for the
SeminarJnlLine record variable.
a. In the Code function trigger, enter the following code.

WITH SeminarJnlLine DO BEGIN

END;

2. Check whether the SeminarJnlLine is empty by using the EmptyLine
function. If it is empty, the function exits.

a. In the WITH block of the Code function trigger, enter the
following code.

IF EmptyLine THEN

 EXIT;

 Note: For all successive steps in this task, keep adding the code to the Code
function trigger, just before the END of the WITH block.

3. Runs the RunCheck function of the SeminarJnlCheckLine codeunit.
a. Enter the following code.

SeminarJnlCheckLine.RunCheck(SeminarJnlLine);

4. If the NextEntryNo is 0, lock the SeminarLedgEntry record, then set
the NextEntryNo to the Entry No. of the last record in the
SeminarLedgEntry table, if it can be found. Then, increase the
NextEntryNo by one.

a. Enter the following code.

IF NextEntryNo = 0 THEN BEGIN

 SeminarLedgerEntry.LOCKTABLE;

 IF SeminarLedgerEntry.FINDLAST THEN

 NextEntryNo := SeminarLedgerEntry."Entry No.";

 NextEntryNo := NextEntryNo + 1;

END;

4 - 51 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

 Note: If the NextEntryNo variable is equal to zero, it means that the Code
function was called for the first time during the posting process. In this case, to
maintain the transaction integrity, the Seminar Ledger Entry table must be locked.

Then, the next entry number must be calculated. If there are any other entries in the
Seminar Ledger Entry table, then the NextEntryNo is set to the last Entry No.
used, and if there are no other entries, then it remains at zero.

Finally, the NextEntryNo is increased by one, to make sure that it either starts at
one for the very first ledger entry or at the next available value if there are other
ledger entries already in the table.

5. If the Document Date is empty, the set the Document Date to the
Posting Date.

a. Enter the following code.

IF "Document Date" = 0D THEN

 "Document Date" := "Posting Date";

6. Create or update the SeminarRegister record, depending on
whether the register record was previously created for this posting.
When you create the register record, initialize all fields according to
their meaning.

 Note: If the No. field of the SeminarRegister record is zero, then the register
record has not yet been created.

a. Enter the following code.

IF SeminarRegister."No." = 0 THEN BEGIN

 SeminarRegister.LOCKTABLE;

 IF (NOT SeminarRegister.FINDLAST) OR (SeminarRegister."To Entry No." <> 0)
THEN BEGIN

 SeminarRegister.INIT;

 SeminarRegister."No." := SeminarRegister."No." + 1;

 SeminarRegister."From Entry No." := NextEntryNo;

 SeminarRegister."To Entry No." := NextEntryNo;

 SeminarRegister."Creation Date" := TODAY;

4 - 52 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
 SeminarRegister."Source Code" := "Source Code";

 SeminarRegister."Journal Batch Name" := "Journal Batch Name";

 SeminarRegister."User ID" := USERID;

 SeminarRegister.INSERT;

 END;

END;

SeminarRegister."To Entry No." := NextEntryNo;

SeminarRegister.MODIFY;

 Note: If the register has not yet been initialized, then the table is first locked
to maintain the transaction integrity.

If there are no register records in the table at all, or if this is the first time in this
transaction that the Code function is called (the To Entry No. field is zero only for
the first call), then a register record is initialized and populated with relevant data.
From Entry No. is set to the NextEntryNo., which at this point is the first entry for
the transaction.

Finally, for every call to the Code function, the To Entry No. field is set to the
NextEntryNo. field. This increases by one every time that the function is called.
This ensures that at the end of the transaction, the From Entry No. field of the
register record is set to the Entry No. field of the first ledger entry. Also, the To
Entry No. field is set to the Entry No. field of the last ledger entry in the
transaction.

7. Create a new SeminarLedgerEntry record, populate the fields from
the SeminarJnlLine record, set the Entry No. field to the
NextEntryNo variable, insert the new record, and then increment the
NextEntryNo variable by one. Finally, save the codeunit.

a. Enter the following code.

SeminarLedgerEntry.INIT;

SeminarLedgerEntry."Seminar No." := "Seminar No.";

SeminarLedgerEntry."Posting Date" := "Posting Date";

SeminarLedgerEntry."Document Date" := "Document Date";

SeminarLedgerEntry."Entry Type" := "Entry Type";

4 - 53 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
SeminarLedgerEntry."Document No." := "Document No.";

SeminarLedgerEntry.Description := Description;

SeminarLedgerEntry."Bill-to Customer No." := "Bill-to Customer No.";

SeminarLedgerEntry."Charge Type" := "Charge Type";

SeminarLedgerEntry.Type := Type;

SeminarLedgerEntry.Quantity := Quantity;

SeminarLedgerEntry."Unit Price" := "Unit Price";

SeminarLedgerEntry."Total Price" := "Total Price";

SeminarLedgerEntry."Participant Contact No." := "Participant Contact No.";

SeminarLedgerEntry."Participant Name" := "Participant Name";

SeminarLedgerEntry.Chargeable := Chargeable;

SeminarLedgerEntry."Room Resource No." := "Room Resource No.";

SeminarLedgerEntry."Instructor Resource No." := "Instructor Resource No.";

SeminarLedgerEntry."Starting Date" := "Starting Date";

SeminarLedgerEntry."Seminar Registration No." := "Seminar Registration No.";

SeminarLedgerEntry."Res. Ledger Entry No." := "Res. Ledger Entry No.";

SeminarLedgerEntry."Source Type" := "Source Type";

SeminarLedgerEntry."Source No." := "Source No.";

SeminarLedgerEntry."Journal Batch Name" := "Journal Batch Name";

SeminarLedgerEntry."Source Code" := "Source Code";

SeminarLedgerEntry."Reason Code" := "Reason Code";

4 - 54 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
SeminarLedgerEntry."No. Series" := "Posting No. Series";

SeminarLedgerEntry."User ID" := USERID;

SeminarLedgerEntry."Entry No." := NextEntryNo;

SeminarLedgerEntry.INSERT;

NextEntryNo := NextEntryNo + 1;

b. Compile, save, and then close the codeunit.

Exercise 3: Create the Seminar Ledger Entries Page
Exercise Scenario

Now you must create the page to show the ledger entries. The page must be of
list type, and must be noneditable.

Task 1: Create the Page

High Level Steps
1. Create a noneditable list page for the Seminar Ledger Entry table by

using a wizard and adding the fields to the page.
2. Save the page as 123456721, Seminar Ledger Entries, and close it.

Detailed Steps
1. Create a noneditable list page for the Seminar Ledger Entry table by

using a wizard and adding the fields to the page.
a. In Object Designer, show the pages, and then click New.

b. Choose the Seminar Ledger Entry table, and then start the List
Page Wizard.

c. Add the following fields to the page:
 Posting Date

 Document No.

 Document Date

 Entry Type

 Seminar No.

 Description

 Bill-to Customer No.

 Charge Type

 Type

 Quantity

 Unit Price

4 - 55 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
 Total Price

 Chargeable

 Participant Contact No.

 Participant Name

 Instructor Resource No.

 Room Resource No.

 Starting Date

 Seminar Registration No.

 Entry No.

d. Add the Record Links and Notes system FactBoxes.

e. Finish the wizard.
f. Set the Visible property for the Document Date field to FALSE.
g. Set the Editable property for the page to No.
h. Set the Caption property for the page to “Seminar Ledger

Entries”.

2. Save the page as 123456721, Seminar Ledger Entries, and close it.
a. Save the page as 123456721, Seminar Ledger Entries.

b. Close the Page Designer window.

Exercise 4: Create the Seminar Reg.-Show Ledger Codeunit
Exercise Scenario

The last codeunit you must create is the Seminar Reg.-Show Ledger codeunit. The
sole purpose of this codeunit is to show the records from the Seminar Ledger
Entry table that are filtered to only a single transaction. The transaction is defined
by the Seminar Register record that this function receives through the Rec
parameter of the OnRun trigger.

Task 1: Create the Codeunit

High Level Steps
1. Create the codeunit 123456734, Seminar Reg.-Show Ledger, and

set the properties to specify the Seminar Register as the source table
for this codeunit.

2. Declare a global variable for the Seminar Ledger Entry table.

Detailed Steps
1. Create the codeunit 123456734, Seminar Reg.-Show Ledger, and

set the properties to specify the Seminar Register as the source table
for this codeunit.
a. In Object Designer, show the codeunits, and then click New.

4 - 56 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
b. Save the new codeunit as 123456734, Seminar Reg.-Show

Ledger.
c. Set the TableNo property for the codeunit to “Seminar Register”.

2. Declare a global variable for the Seminar Ledger Entry table.

a. Create the following global variable.

Name DataType Subtype

SeminarLedgerEntry Record Seminar Ledger Entry

Task 2: Add Code to the OnRun Trigger

High Level Steps
1. Enter code in the appropriate trigger so that when the program runs

the codeunit, the codeunit runs the Seminar Ledger Entries page.
This shows only those entries between the From Entry No. field and
the To Entry No. field on the Seminar Register.

Detailed Steps
1. Enter code in the appropriate trigger so that when the program runs

the codeunit, the codeunit runs the Seminar Ledger Entries page.
This shows only those entries between the From Entry No. field and
the To Entry No. field on the Seminar Register.
a. In the OnRun trigger, enter the following code.

SeminarLedgerEntry.SETRANGE("Entry No.","From Entry No.","To Entry No.");

PAGE.RUN(PAGE::"Seminar Ledger Entries",SeminarLedgerEntry);

b. Compile, save, and then close the codeunit.

Exercise 5: Create the Seminar Registers Page

Task 1: Create the Page

High Level Steps
1. Create a noneditable list page for the Seminar Register table by

using a wizard and add the fields to the page.
2. Add an action to the RelatedInformation action container to run the

Seminar Reg.-Show Ledger codeunit.

3. Save the page as 123456722, Seminar Registers, and close it.

4 - 57 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Detailed Steps

1. Create a noneditable list page for the Seminar Register table by
using a wizard and add the fields to the page.
a. In Object Designer, show the pages, and then click New.
b. Choose the Seminar Register table, and then start the List Page

Wizard.
c. Add the following fields to the page:

 No.

 Creation Date

 User ID

 Source Code

 Journal Batch Name

 From Entry No.

 To Entry No.

d. Add the Record Links and Notes system FactBoxes.
e. Finish the wizard.
f. Set the Editable property for the page to No.
g. Set the Caption property for the page to “Seminar Registers”.

2. Add an action to the RelatedInformation action container to run the

Seminar Reg.-Show Ledger codeunit.
a. Open the Page – Action Designer window.

b. Define the RelatedInformation action container.
c. Define the Register action group.
d. Add the Seminar Ledger action, and set RunObject property to

run the Seminar Reg.-Show Ledger codeunit.

e. Assign the WarrantyLedger image to the action and promote it as
a large action to the Process category.

3. Save the page as 123456722, Seminar Registers, and close it.

a. Save the page as 123456722, Seminar Registers.
b. Close the Page Designer window.

4 - 58 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

Lab 4.3: Creating the Tables and Pages for Posted
Registration Information

Scenario

CRONUS International Ltd. wants to post the Seminar Registration documents
after the seminars are completed. You must create the tables and pages that will
store and show the posted seminar registration information.

When a user posts a document in Microsoft Dynamics NAV 2013, the structure of
the posted information must match the structure of the original information in all
relevant aspects. This means that the data model for posted documents must
always match the data model for open documents. It is both a convention and a
requirement in Microsoft Dynamics NAV 2013 that posted document table fields
match the document table fields. If a field is relevant for the posted document,
then it must have the same Field No. as the same field in the document table.
This makes it easier for users to match the posted document information to the
information they originally entered into the system. It also simplifies development
because you can use the TRANSFERFIELDS function to copy the field values
between open and posted document tables.

 Note: The TRANSFERFIELDS function copies all fields that have the same
Field No. from the source table to the destination table. The fields must have the
same data type for the copying to succeed (text and code are convertible, other
types are not). There must be room for the actual length of the contents of the field
to be copied in the field to which it is to be copied. If any one of these conditions is
not fulfilled, a run-time error occurs.

Therefore, the simplest way to create the posted document tables is by saving the
original tables under a different ID and Name. Then make any necessary changes,
such as removing unnecessary fields, or appending those fields that are not
relevant for the document, but are relevant for the posted document tables.

Exercise 1: Create the Posted Registration Tables
Exercise Scenario

You start by creating the tables for posted registration information. The best
approach is to design each document table, and save it under a new ID and name.
Then, you must remove all the code from the tables, and make any necessary
corrections to table and field properties to meet the requirements and best
practices for posted document tables.

4 - 59 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 1: Create the Posted Seminar Reg. Header Table

High Level Steps
1. Create the Posted Seminar Reg. Header table by saving the

Seminar Registration Header table under ID 123456718.

2. Remove all the code from the table.
3. Delete and rename fields to match the standards for posted

document header tables, and add the User ID and Source Code
fields.

4. Add code to the OnLookup trigger of the User ID field to run the
LookupUser function of the User Management codeunit.

5. Correct the calculation formula for the Comment field.
6. Set the Caption property for the table to match its Name, and then

save and close the table.

Detailed Steps
1. Create the Posted Seminar Reg. Header table by saving the

Seminar Registration Header table under ID 123456718.
a. Design the table 123456710, Seminar Registration Header.
b. Click File > Save As. Save the table as 123456718, Posted

Seminar Reg. Header.

2. Remove all the code from the table.
a. In the C/AL Globals window, delete all variables, text constants,

and functions.

b. In the C/AL Editor window, delete all C/AL code. To do this, click
the header bar for the Documentation trigger (or any other
trigger), then press CTRL+A, then press DEL.

c. Confirm the deletion by clicking Yes.

3. Delete and rename fields to match the standards for posted
document header tables, and add the User ID and Source Code
fields.
a. Delete the Posting No. field.
b. Rename the Posting No. Series field to Registration No. Series,

and modify its Caption accordingly.

c. Add the following fields.

Field No. Field Name Data Type Length

29 User ID Code 20

30 Source Code Code 10

4 - 60 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
d. Set the TableRelation property for the User ID field to the User

Name field of the User table, and set its ValidateTableRelation
and TestTableRelationship properties to No.

e. Set the TableRelation property for the Source Code field to the
Source Code table.

4. Add code to the OnLookup trigger of the User ID field to run the
LookupUser function of the User Management codeunit.
a. In the User ID – OnLookup trigger, view the C/AL Locals.
b. Define the following local variable.

Name DataType Subtype

UserMgt Codeunit User Management

c. Enter the following code.

UserMgt.LookupUserID("User ID");

5. Correct the calculation formula for the Comment field.
a. In the CalcFormula property for the Comment field, correct the

table filter so that the Document Type field is filtered on Posted
Seminar Registration value instead of Seminar Registration value.

 Note: Click the AssistEdit button in the CalcFormula to access the
Calculation Formula window, and then click the AssistEdit button in the Table
Filter field to access the Table Filter window.

6. Set the Caption property for the table to match its Name, and then
save and close the table.

a. Set the Caption property for the table to “Posted Seminar Reg.
Header”.

b. Compile, save, and then close the table.

Task 2: Create the Posted Seminar Reg. Line Table

High Level Steps
1. Create the Posted Seminar Reg. Line table by saving the Seminar

Registration Line table under ID 123456719.
2. Correct the table relation for the Document No. field.
3. Remove all code from the table.
4. Set the Caption property for the table to match its Name, and then

save and close the table.

4 - 61 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Detailed Steps

1. Create the Posted Seminar Reg. Line table by saving the Seminar
Registration Line table under ID 123456719.
a. Design the table 123456711, Seminar Registration Line.
b. Click File > Save As. Save the table as 123456719, Posted

Seminar Reg. Line.

2. Correct the table relation for the Document No. field.
a. For the Document No. field, set the TableRelation property to

the Posted Seminar Reg. Header table.

3. Remove all code from the table.
a. In the C/AL Globals window, delete all variables, text constants,

and functions.
b. In the C/AL Editor window, delete all C/AL code. To do this, click

the header bar for the Documentation trigger (or any other
trigger), then press CTRL+A, then press DEL.

c. Confirm the deletion by clicking Yes.

4. Set the Caption property for the table to match its Name, and then
save and close the table.
a. Set the Caption property for the table to “Posted Seminar Reg.

Line”.
b. Compile, save, and then close the table.

Task 3: Create the Posted Seminar Charge Table

High Level Steps
1. Create the Posted Seminar Charge table by saving the Seminar

Charge table under ID 123456721.
2. Correct the table relation for the Document No. field.
3. Remove all code from the table.

4. Set the Caption property for the table to match its Name, and then
save and close the table.

Detailed Steps
1. Create the Posted Seminar Charge table by saving the Seminar

Charge table under ID 123456721.
a. Design the table 123456712, Seminar Charge.
b. Click File > Save As. Save the table as 123456721, Posted

Seminar Charge.

4 - 62 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
2. Correct the table relation for the Document No. field.

a. For the Document No. field, set the TableRelation property to
the Posted Seminar Reg. Header table.

3. Remove all code from the table.
a. In the C/AL Globals window, delete all variables, text constants,

and functions.
b. In the C/AL Editor window, delete all C/AL code. To do this, click

the header bar for the Documentation trigger (or any other
trigger), then press CTRL+A, then press DEL.

c. Confirm the deletion by clicking Yes.

4. Set the Caption property for the table to match its Name, and then
save and close the table.

a. Set the Caption property for the table to “Posted Seminar
Charge”.

b. Compile, save, and then close the table.

Exercise 2: Import the Posted Registration Pages
Exercise Scenario

After you have created the tables, continue to the most important functionality of
the seminar posting feature: the document posting routine. In the meantime, you
assign the task to Isaac to develop the following pages for accessing the posted
document information: Posted Seminar Registration, Posted Seminar Reg. List,
and Posted Seminar Charges.

Task 1: Import the Objects

High Level Steps
1. In Object Designer, import the Mod04\Labfiles\Lab 4.C - Starter -

Posted Registration Pages.fob file.

2. Select and compile the imported objects.

Detailed Steps
1. In Object Designer, import the Mod04\Labfiles\Lab 4.C - Starter -

Posted Registration Pages.fob file.
a. In Object Designer, click File > Import.
b. In the Import Objects dialog box, browse to Mod04\Labfiles\Lab

4.C - Starter - Posted Registration Pages.fob file.
c. Click Open.

4 - 63 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
2. Select and compile the imported objects.

a. View all objects in Object Designer.

b. Filter the view to only show the uncompiled objects.
c. Compile the objects.
d. Clear all filters in the Object Designer by pressing

SHIFT+CTRL+F7.

Task 2: Review the Objects

High Level Steps
1. Review the imported objects.

Detailed Steps
1. Review the imported objects.

a. Design the page 123456734, Posted Seminar Registration.
b. Review the page contents in the Page Preview window.
c. Review the page properties.
d. Close the page 123456734.

e. Design the page 123456736, Posted Seminar Reg. List.
f. Review the page contents in the Page Preview window.
g. Review the page properties.
h. Close the page 123456736.

i. Design the page 123456739, Posted Seminar Charges.
j. Review the page contents in the Page Preview window.
k. Review the page properties.
l. Close the page 123456739.

4 - 64 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

Lab 4.4: Modifying Tables, Pages, and Codeunits for
Resource Posting

Scenario

When you create new modules, such as Seminar Management, you frequently
have to integrate those custom modules with existing features and functionality.
Seminars integrate with Resource Management functionality. You use resources to
represent instructors and rooms. For auditing and reporting, you want to attach
the seminar information to all records in the Resource Ledger Entry table. This
performs the following goals:

• You have a more robust trail record because you know which
resource ledger entries are related to a seminar.

• You can easily and efficiently calculate totals for combinations of
instructors, rooms, and seminars.

• You enable seamless user interface flow between Resource
Management and Seminar Management functional areas, because all
entries are related on the data model level.

You decide to add the following fields to the Resource Ledger Entry table.

Field Remarks

Seminar No. Lets you keep track of which instructor or
room is connected with a seminar.

Seminar Registration No. Link the posted seminar registration so that
users can easily move to all instructor or
room resource ledger entries from a posted
seminar registration.

 Note: The Seminar No. field seems redundant, because it can be retrieved
through the Seminar Registration No. field. However, if you omit the Seminar No.
field, you cannot directly filter on resource ledger entries for specific seminars. This
reduces the user experience, and adds processing demands when you might have to
report or total instructor or room ledger entries by seminar. Therefore, while adding
an additional field is not an elegant solution from the data normalization
perspective, it is the most efficient solution from the user experience and data
processing perspective.

4 - 65 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
To make sure that the Seminar No. and Seminar Registration No. fields are
always posted into the Resource Ledger Entry table, you must also change the
following existing objects.

.Type ID Name Remarks

Table 203 Res. Ledger Entry

Table 207 Res. Journal Line To post any new
fields to a Ledger
Entry table, you
must first add those
fields to the
matching Journal
Line table.

Codeunit 212 Res. Jnl.-Post Line To move the fields
from a Journal Line
table to the
matching Ledger
Entry table, you
must add the
appropriate code to
the Post Line
codeunit for the
journal.

Page 202 Resource Ledger
Entries

You typically want to
show the new fields
in the Ledger
Entries page.

Exercise 1: Modify the Objects
Exercise Scenario

You start by adding and changing the necessary fields to the Res. Ledger Entry
and Res. Journal Line tables, and then modify the Resource Ledger Entries
page, and the Res. Jnl.-Post Line codeunit.

4 - 66 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Task 1: Modify the Res. Ledger Entry Table

High Level Steps
1. Add the Seminar No. and Seminar Registration No. fields to the

table 203, Res. Ledger Entry.

Detailed Steps
1. Add the Seminar No. and Seminar Registration No. fields to the

table 203, Res. Ledger Entry.

a. Design the table 203, Res. Ledger Entry.
b. Add the following fields.

No. Field Name Type Length Remarks

123456700 Seminar No. Code 20 Set the table
relation to
the Seminar
table.

123456701 Seminar
Registration
No.

Code 20 Set the table
relation to
the Posted
Seminar Reg.
Header table.

c. Set the Caption property for both these fields to match their
Name.

d. Compile, save, and then close the table.

Task 2: Modify the Res. Journal Line Table

High Level Steps
1. Add the Seminar No. and Seminar Registration No. fields to the

table 207, Res. Journal Line.

Detailed Steps
1. Add the Seminar No. and Seminar Registration No. fields to the

table 207, Res. Journal Line.
a. Design the table 207, Res. Journal Line.
b. Add the following fields.

No. Field Name Type Length Remarks

123456700 Seminar No. Code 20 Set the table
relation to the
Seminar table.

4 - 67 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
No. Field Name Type Length Remarks

123456701 Seminar
Registration
No.

Code 20 Set the table
relation to the
Posted
Seminar Reg.
Header table.

c. Set the Caption property for both these fields to match their
Name.

d. Compile, save, and then close the table.

 Note: When the fields with same Nos. and Names exist in multiple tables, you
can copy them from one table to another. Here, instead of creating fields, you can
copy the fields from the Res. Ledger Entry table.

Task 3: Modify the Resource Ledger Entries Page

High Level Steps
1. Add the Seminar No. and Seminar Registration No. fields to the

page 202, Resource Ledger Entries.

Detailed Steps
1. Add the Seminar No. and Seminar Registration No. fields to the

page 202, Resource Ledger Entries.
a. Design the page 202, Resource Ledger Entries.
b. Above the Job No. field, insert the Seminar No. and Seminar

Registration No. fields.
c. Compile, save, and then close the page.

Task 4: Modify the Res. Jnl.-Post Line Codeunit

High Level Steps
1. In codeunit 212, Res Jnl.-Post Line, enter code into the Code function

trigger so that when the function is populating the ResLedgEntry
fields, it also assigns the Seminar No. and Seminar Registration No.
fields from the Res. Journal Line table.

Detailed Steps
1. In codeunit 212, Res Jnl.-Post Line, enter code into the Code function

trigger so that when the function is populating the ResLedgEntry
fields, it also assigns the Seminar No. and Seminar Registration No.
fields from the Res. Journal Line table.
a. Design the codeunit 212, Res. Jnl.-Post Line.

4 - 68 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
b. In the Code function trigger, below the assignment of the Qty.

per Unit of Measure field, and above the GetGLSetup line, enter
the following code.

//CSD1.00>

 ResLedgEntry."Seminar No." := "Seminar No.";

 ResLedgEntry."Seminar Registration No." := "Seminar Registration No.";

//CSD1.00<

c. Compile, save, and then close the codeunit.

4 - 69 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

Lab 4.5: Creating the Codeunits for Document Posting
Scenario

Isaac has started developing the codeunits for seminar registration posting, but
the task was too complex for him. He completed the Seminar-Post (Yes/No)
codeunit. For the Seminar-Post codeunit he declared variables and functions, and
then decided to hand over the task to you. Therefore, you complete the Seminar-
Post and Seminar-Post (Yes/No) codeunits that Isaac started developing.

When you have completed the development of these codeunits, you must modify
the document pages to let users call the posting routine from the RoleTailored
client.

Because you have not yet developed any reports for the Seminar Management
functional area, you do not have to provide the Post + Print codeunit.

Exercise 1: Complete the Seminar-Post Codeunit
Exercise Scenario

The Seminar-Post codeunit is the central codeunit of seminar registration posting.
It takes the Seminar Registration Header record as a parameter, and processes the
information that is contained in it to produce a Posted Seminar Registration
document. It must also create the seminar ledger entries for the participants, the
instructor, the room, any seminar charges, and the resource ledger entries for the
instructor and the room.

Task 1: Import the File

High Level Steps
1. Import the starter objects.

Detailed Steps
1. Import the starter objects.

a. In Object Designer, click File > Import.
b. Locate the Mod04\Labfiles\ Lab 4.E - Starter.fob object file and

click OK.
c. Click Yes to complete the import.
d. Close the Import Objects window.

4 - 70 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Task 2: Complete the CopyCommentLines Function

High Level Steps
1. In the CopyCommentLines function trigger, enter the code that finds

records in the Seminar Comment Line table that matches the
specified FromDocumentType and FromNumber, and for each record
inserts a copy of the old record, with the Document Type and No.
set to the ToDocumentType and ToNumber.

Detailed Steps
2. In the CopyCommentLines function trigger, enter the code that finds

records in the Seminar Comment Line table that matches the
specified FromDocumentType and FromNumber, and for each record
inserts a copy of the old record, with the Document Type and No.
set to the ToDocumentType and ToNumber.
a. In the CopyCommentLines function trigger, enter the following

code.

SeminarCommentLine.RESET;

SeminarCommentLine.SETRANGE("Document Type",FromDocumentType);

SeminarCommentLine.SETRANGE("No.",FromNumber);

IF SeminarCommentLine.FINDSET(FALSE,FALSE) THEN BEGIN

 REPEAT

 SeminarCommentLine2 := SeminarCommentLine;

 SeminarCommentLine2."Document Type" := ToDocumentType;

 SeminarCommentLine2."No." := ToNumber;

 SeminarCommentLine2.INSERT;

 UNTIL SeminarCommentLine.NEXT = 0;

END;

4 - 71 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 3: Complete the CopyCharges Function

High Level Steps
1. In the CopyCharges function trigger, enter the code that finds all

Seminar Charge records that correspond to the specified
FromNumber. For each record found, the function transfers the values
to a new Posted Seminar Charge record, by using the ToNumber as
the Seminar Registration No.

Detailed Steps

1. In the CopyCharges function trigger, enter the code that finds all
Seminar Charge records that correspond to the specified
FromNumber. For each record found, the function transfers the values
to a new Posted Seminar Charge record, by using the ToNumber as
the Seminar Registration No.

 Note: Because the SeminarCharge and the PstdSeminarCharge variables are
based on different tables, you cannot assign the record variables directly. All field
values must be assigned individually. If the PstdSeminarCharge table field number
and types are the same as the SeminarCharge table, you can use the
TRANSFERFIELDS function to transfer all the field values at one time.

a. In the CopyCharges function trigger, enter the following code.

SeminarCharge.RESET;

SeminarCharge.SETRANGE("Document No.",FromNumber);

IF SeminarCharge.FINDSET(FALSE,FALSE) THEN BEGIN

 REPEAT

 PstdSeminarCharge.TRANSFERFIELDS(SeminarCharge);

 PstdSeminarCharge."Document No." := ToNumber;

 PstdSeminarCharge.INSERT;

 UNTIL SeminarCharge.NEXT = 0;

END;

4 - 72 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
Task 4: Complete the PostResJnlLine Function

High Level Steps
1. In the PostResJnlLine function trigger, enter WITH code block for

the SeminarRegHeader record variable.

2. In the WITH code block, enter the code that does the following:
o Makes sure that the Quantity Per Day field on the Resource

record is not empty,

o Initializes a Resource Journal Line record.

o Sets its Entry Type to Usage.

o Assigns the Document No. from the PstdSeminarRegHeader
record variable.

o Assigns the Resource No. from the Resource record parameter.

3. In the WITH code block, append the code that assigns the following
field values from the seminar Registration Header record:
o Posting Date

o Reason Code

o Description

o Gen. Prod. Posting Group

o Posting No. Series

Assign these from the fields that have the same name, except for the
Description field. Assign this from the Seminar Name field. Assign
the Source Code field from the SourceCode global variable. Assign
the Resource No., Unit of Measure Code and Unit Cost fields from
the Resource record parameter. Set the Qty. per Unit of Measure
field to 1.

4. In the WITH code block, append the code that calculates the
Quantity field as the product of the Duration field from the
SeminarRegHeader record variable and the Quantity Per Day field
from the Resource record parameter. Then, calculate the Total Cost
field as the product of the Unit Cost and Quantity field values. Then,
assign values to Seminar No. and Seminar Registration No. fields.
Finally, call the RunWithCheck function of the Res. Jnl.-Post Line
codeunit.

5. After the WITH block, find the last Resource Ledger Entry, and
return its Entry No. field value as the function return value.

4 - 73 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Detailed Steps

1. In the PostResJnlLine function trigger, enter WITH code block for
the SeminarRegHeader record variable.
b. In the PostResJnlLine function trigger, enter the following code.

WITH SeminarRegHeader DO BEGIN

END;

2. In the WITH code block, enter the code that does the following:
o Makes sure that the Quantity Per Day field on the Resource

record is not empty,

o Initializes a Resource Journal Line record.

o Sets its Entry Type to Usage.

o Assigns the Document No. from the PstdSeminarRegHeader
record variable.

o Assigns the Resource No. from the Resource record parameter.

a. In the WITH block, enter the following code.

Resource.TESTFIELD("Quantity Per Day");

ResJnlLine.INIT;

ResJnlLine."Entry Type" := ResJnlLine."Entry Type"::Usage;

ResJnlLine."Document No." := PstdSeminarRegHeader."No.";

ResJnlLine."Resource No." := Resource."No.";

3. In the WITH code block, append the code that assigns the following
field values from the seminar Registration Header record:

o Posting Date

o Reason Code

o Description

o Gen. Prod. Posting Group

o Posting No. Series

Assign these from the fields that have the same name, except for the
Description field. Assign this from the Seminar Name field. Assign
the Source Code field from the SourceCode global variable. Assign
the Resource No., Unit of Measure Code and Unit Cost fields from
the Resource record parameter. Set the Qty. per Unit of Measure
field to 1.

4 - 74 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
a. In the WITH code block, append the following code.

ResJnlLine."Posting Date" := "Posting Date";

ResJnlLine."Reason Code" := "Reason Code";

ResJnlLine.Description := "Seminar Name";

ResJnlLine."Gen. Prod. Posting Group" := "Gen. Prod. Posting Group";

ResJnlLine."Posting No. Series" := "Posting No. Series";

ResJnlLine."Source Code" := SourceCode;

ResJnlLine."Resource No." := Resource."No.";

ResJnlLine."Unit of Measure Code" := Resource."Base Unit of Measure";

ResJnlLine."Unit Cost" := Resource."Unit Cost";

ResJnlLine."Qty. per Unit of Measure" := 1;

4. In the WITH code block, append the code that calculates the
Quantity field as the product of the Duration field from the
SeminarRegHeader record variable and the Quantity Per Day field
from the Resource record parameter. Then, calculate the Total Cost
field as the product of the Unit Cost and Quantity field values. Then,
assign values to Seminar No. and Seminar Registration No. fields.
Finally, call the RunWithCheck function of the Res. Jnl.-Post Line
codeunit.
a. In the WITH code block, append the following code.

ResJnlLine.Quantity := Duration * Resource."Quantity Per Day";

ResJnlLine."Total Cost" := ResJnlLine."Unit Cost" * ResJnlLine.Quantity;

ResJnlLine."Seminar No." := "Seminar No.";

ResJnlLine."Seminar Registration No." := PstdSeminarRegHeader."No.";
ResJnlPostLine.RunWithCheck(ResJnlLine);

5. After the WITH block, find the last Resource Ledger Entry, and
return its Entry No. field value as the function return value.
a. After the WITH block, enter the following code.

ResLedgEntry.FINDLAST;

EXIT(ResLedgEntry."Entry No.");

4 - 75 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 5: Complete the PostSeminarJnlLine Function

High Level Steps
1. In the PostSeminarJnlLine function trigger, enter WITH code block

for the SeminarRegHeader record variable.

2. In the WITH block, enter the code that initializes the SeminarJnlLine
record variable, and then assigns the following fields from the
SeminarRegHeader and PstdSeminarRegHeader record variables, as
appropriate:
o Seminar No.

o Posting Date

o Document Date

o Document No.

o Charge Type

o Instructor Resource No.

o Starting Date

o Seminar Registration No.

o Room Resource No.

o Source Type

o Source Code

o Reason Code

o Posting No.

3. To the WITH code block, append the code that compares the
ChargeType parameter to all possible option values that it can have.

4. If the ChargeType is Instructor, retrieve the appropriate Resource
record, and then on the SeminarJnlLine record variable, assign
Description from the instructor Name, set Type to Resource, set
Chargeable to FALSE, and set Quantity to the Duration field from
the SeminarRegHeader. Finally, call the PostResJnlLine, and assign its
return value to the Res. Ledger Entry No. field of the SeminarJnlLine
record variable.

5. If the ChargeType is Room, retrieve the appropriate Resource, and
then on the SeminarJnlLine record variable, assign Description from
the room Name, set Type to Resource, set Chargeable to FALSE,
and set Quantity to the Duration field from the
SeminarRegHeader. Finally, call the PostResJnlLine, and assign its
return value to the Res. Ledger Entry No. field of the SeminarJnlLine
record variable.

4 - 76 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
6. If the ChargeType is Participant, assign the fields to the SeminarJnlLine

record variable from the SeminarRegLine record variable. Assign the
following fields:
o Bill-to Customer No.

o Participant Contact No.

o Participant Name

o Description

o Chargeable

o Unit Price

o Total Price

Description is set from Participant Name, Chargeable is set from
To Invoice, and Unit Price and Total Price are set from Amount. Set
the Type to Resource and Quantity to 1.

7. If ChargeType is Charge, then assign the fields to the SeminarJnlLine
record variable from the SeminarCharge record variable. Assign the
following fields:
o Description

o Bill-to Customer No.

o Type

o Quantity

o Unit Price

o Total Price

o Chargeable

Chargeable is set from To Invoice.

8. After the CASE block, post the SeminarJnlLine through the Seminar
Jnl.-Post Line codeunit.

Detailed Steps
1. In the PostSeminarJnlLine function trigger, enter WITH code block

for the SeminarRegHeader record variable.
a. In the PostSeminarJnlLine function trigger, enter the following

code.

WITH SeminarRegHeader DO BEGIN

END;

4 - 77 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
2. In the WITH block, enter the code that initializes the SeminarJnlLine

record variable, and then assigns the following fields from the
SeminarRegHeader and PstdSeminarRegHeader record variables, as
appropriate:
o Seminar No.

o Posting Date

o Document Date

o Document No.

o Charge Type

o Instructor Resource No.

o Starting Date

o Seminar Registration No.

o Room Resource No.

o Source Type

o Source Code

o Reason Code

o Posting No.

a. In the WITH block, enter the following code.

SeminarJnlLine.INIT;

SeminarJnlLine."Seminar No." := "Seminar No.";

SeminarJnlLine."Posting Date" := "Posting Date";

SeminarJnlLine."Document Date" := "Document Date";

SeminarJnlLine."Document No." := PstdSeminarRegHeader."No.";

SeminarJnlLine."Charge Type" := ChargeType;

SeminarJnlLine."Instructor Resource No." := "Instructor Resource No.";

SeminarJnlLine."Starting Date" := "Starting Date";

SeminarJnlLine."Seminar Registration No." := PstdSeminarRegHeader."No.";

SeminarJnlLine."Room Resource No." := "Room Resource No.";

SeminarJnlLine."Source Type" := SeminarJnlLine."Source Type"::Seminar;

SeminarJnlLine."Source No." := "Seminar No.";

SeminarJnlLine."Source Code" := SourceCode;

4 - 78 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
SeminarJnlLine."Reason Code" := "Reason Code";

SeminarJnlLine."Posting No. Series" := "Posting No. Series";

3. To the WITH code block, append the code that compares the
ChargeType parameter to all possible option values that it can have.
a. In the WITH block, append the following code.

CASE ChargeType OF

 ChargeType::Instructor:

 BEGIN

 END;

 ChargeType::Room:

 BEGIN

 END;

 ChargeType::Participant:

 BEGIN

 END;

 ChargeType::Charge:

 BEGIN

 END;

END;

4. If the ChargeType is Instructor, retrieve the appropriate Resource
record, and then on the SeminarJnlLine record variable, assign
Description from the instructor Name, set Type to Resource, set
Chargeable to FALSE, and set Quantity to the Duration field from
the SeminarRegHeader. Finally, call the PostResJnlLine, and assign its
return value to the Res. Ledger Entry No. field of the SeminarJnlLine
record variable.
a. In the Instructor block, enter the following code.

Instructor.GET("Instructor Resource No.");

SeminarJnlLine.Description := Instructor.Name;

4 - 79 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
SeminarJnlLine.Type := SeminarJnlLine.Type::Resource;

SeminarJnlLine.Chargeable := FALSE;

SeminarJnlLine.Quantity := Duration;

SeminarJnlLine."Res. Ledger Entry No." := PostResJnlLine(Instructor);

5. If the ChargeType is Room, retrieve the appropriate Resource, and
then on the SeminarJnlLine record variable, assign Description from
the room Name, set Type to Resource, set Chargeable to FALSE,
and set Quantity to the Duration field from the
SeminarRegHeader. Finally, call the PostResJnlLine, and assign its
return value to the Res. Ledger Entry No. field of the SeminarJnlLine
record variable.
a. In the Room block, enter the following code.

Room.GET("Room Resource No.");

SeminarJnlLine.Description := Room.Name;

SeminarJnlLine.Type := SeminarJnlLine.Type::Resource;

SeminarJnlLine.Chargeable := FALSE;

SeminarJnlLine.Quantity := Duration;

// Post to resource ledger

SeminarJnlLine."Res. Ledger Entry No." := PostResJnlLine(Room);

6. If the ChargeType is Participant, assign the fields to the SeminarJnlLine
record variable from the SeminarRegLine record variable. Assign the
following fields:
o Bill-to Customer No.

o Participant Contact No.

o Participant Name

o Description

o Chargeable

o Unit Price

o Total Price

Description is set from Participant Name, Chargeable is set from
To Invoice, and Unit Price and Total Price are set from Amount. Set
the Type to Resource and Quantity to 1.

4 - 80 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
a. In the Participant block, enter the following code.

SeminarJnlLine."Bill-to Customer No." := SeminarRegLine."Bill-to Customer No.";

SeminarJnlLine."Participant Contact No." := SeminarRegLine."Participant Contact
No.";

SeminarJnlLine."Participant Name" := SeminarRegLine."Participant Name";

SeminarJnlLine.Description := SeminarRegLine."Participant Name";

SeminarJnlLine.Type := SeminarJnlLine.Type::Resource;

SeminarJnlLine.Chargeable := SeminarRegLine."To Invoice";

SeminarJnlLine.Quantity := 1;

SeminarJnlLine."Unit Price" := SeminarRegLine.Amount;

SeminarJnlLine."Total Price" := SeminarRegLine.Amount;

7. If ChargeType is Charge, then assign the fields to the SeminarJnlLine
record variable from the SeminarCharge record variable. Assign the
following fields:

o Description

o Bill-to Customer No.

o Type

o Quantity

o Unit Price

o Total Price

o Chargeable

Chargeable is set from To Invoice.

a. In the Charge block, enter the following code.

SeminarJnlLine.Description := SeminarCharge.Description;

SeminarJnlLine."Bill-to Customer No." := SeminarCharge."Bill-to Customer No.";

SeminarJnlLine.Type := SeminarCharge.Type;

SeminarJnlLine.Quantity := SeminarCharge.Quantity;

SeminarJnlLine."Unit Price" := SeminarCharge."Unit Price";

SeminarJnlLine."Total Price" := SeminarCharge."Total Price";

4 - 81 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
SeminarJnlLine.Chargeable := SeminarCharge."To Invoice";

8. After the CASE block, post the SeminarJnlLine through the Seminar
Jnl.-Post Line codeunit.
a. After the CASE block, enter the following code.

SeminarJnlPostLine.RunWithCheck(SeminarJnlLine);

Task 6: Complete the PostCharges Function

High Level Steps
1. In the PostCharges function trigger, enter the code that calls the

PostSeminarJnlLine function for every Seminar Charge for the
current SeminarRegHeader.

Detailed Steps
1. In the PostCharges function trigger, enter the code that calls the

PostSeminarJnlLine function for every Seminar Charge for the
current SeminarRegHeader.
a. In the PostCharges function trigger, enter the following code.

SeminarCharge.RESET;

SeminarCharge.SETRANGE("Document No.",SeminarRegHeader."No.");

IF SeminarCharge.FINDSET(FALSE,FALSE) THEN BEGIN

 REPEAT

 PostSeminarJnlLine(3); // Charge

 UNTIL SeminarCharge.NEXT = 0;

END;

Task 7: Add Code to the OnRun Trigger

High Level Steps
1. In the OnRun trigger, enter the code that clears all variables and sets

the SeminarRegHeader record variable to the current record. Then
create a WITH block for the SeminarRegHeader variable. After the
WITH block, set the current record to the SeminarRegHeader record
variable.

2. In the WITH block, make sure that the following fields are not empty
and that the Status field value is Closed:
o Posting Date

o Document Date

4 - 82 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
o Seminar No.

o Duration

o Instructor Resource No.

o Room Resource No.

3. If there are no lines for the current document, throw an error.
4. Open a dialog box to show the posting progress.
5. If the Posting No. is blank on the registration header, make sure that

the Posting No. Series is not blank. Then assign the Posting No. to
the next number from the posting number series, as indicated on the
header. Then, modify the header and perform a commit. Finally, lock
the Seminar Registration Line table.

6. Assign the SourceCode variable from the Seminar field of the Source
Code Setup table.

7. Initialize a new Posted Seminar Reg. Header record, and then
transfer the fields from the registration header. Assign No. and No.
Series to the Posting No. and Posting No. Series fields from the
registration header. Assign Source Code from the SourceCode
variable, and User ID from the USERID function. Finally, insert the
Seminar Reg. Header record.

8. Update the dialog box.
9. Copy the comment lines and charges from the registration header to

the posted registration header, by calling the CopyCommentLines
and CopyCharges functions.

10. Set the LineCount variable to zero, and prepare the loop for the
registration lines of the current registration header.

11. For each registration line, increase the LineCount variable by one,
update the dialog window, and make sure that Bill-to Customer No.
and Participant Contact No. are not empty. If the line should not be
invoiced, reset its Seminar Price, Line Discount %, Line Discount
Amount and Amount fields to zero. Post the participant line by
calling the PostSeminarJnlLine function. Finally, initialize and insert a
new posted registration line by transferring the fields from the
registration line, and assigning the appropriate Document No. value.

12. Post the charges by calling the PostCharges function. Then post the
seminar ledger entry for the instructor and the room by calling the
PostSeminarJnlLine function.

13. Delete the registration header, lines, comments, and charges.
14. Save the codeunit.

4 - 83 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Detailed Steps

1. In the OnRun trigger, enter the code that clears all variables and sets
the SeminarRegHeader record variable to the current record. Then
create a WITH block for the SeminarRegHeader variable. After the
WITH block, set the current record to the SeminarRegHeader record
variable.

a. In the OnRun trigger, enter the following code.

CLEARALL;

SeminarRegHeader := Rec;

WITH SeminarRegHeader DO BEGIN

END;

Rec := SeminarRegHeader;

2. In the WITH block, make sure that the following fields are not empty
and that the Status field value is Closed:

o Posting Date

o Document Date

o Seminar No.

o Duration

o Instructor Resource No.

o Room Resource No.

 Note: For all remaining steps in this task, always append the code to the end
of the WITH block.

a. In the WITH block, enter the following code.

TESTFIELD("Posting Date");

TESTFIELD("Document Date");

TESTFIELD("Seminar No.");

TESTFIELD(Duration);

4 - 84 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
TESTFIELD("Instructor Resource No.");

TESTFIELD("Room Resource No.");

TESTFIELD(Status,Status::Closed);

3. If there are no lines for the current document, throw an error.

a. Enter the following code.

SeminarRegLine.RESET;

SeminarRegLine.SETRANGE("Document No.","No.");

IF SeminarRegLine.ISEMPTY THEN

 ERROR(Text001);

4. Open a dialog box to show the posting progress.

a. Enter the following code.

Window.OPEN(

 '#1#################################\\' +

 Text002);

Window.UPDATE(1,STRSUBSTNO('%1 %2',Text003,"No."));

5. If the Posting No. is blank on the registration header, make sure that
the Posting No. Series is not blank. Then assign the Posting No. to
the next number from the posting number series, as indicated on the
header. Then, modify the header and perform a commit. Finally, lock
the Seminar Registration Line table.

a. Enter the following code.

IF SeminarRegHeader."Posting No." = '' THEN BEGIN

 TESTFIELD("Posting No. Series");

 "Posting No." := NoSeriesMgt.GetNextNo("Posting No. Series","Posting
Date",TRUE);

 MODIFY;

 COMMIT;

4 - 85 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
END;

SeminarRegLine.LOCKTABLE;

6. Assign the SourceCode variable from the Seminar field of the Source
Code Setup table.

a. Enter the following code.

SourceCodeSetup.GET;

SourceCode := SourceCodeSetup.Seminar;

7. Initialize a new Posted Seminar Reg. Header record, and then
transfer the fields from the registration header. Assign No. and No.
Series to the Posting No. and Posting No. Series fields from the
registration header. Assign Source Code from the SourceCode
variable, and User ID from the USERID function. Finally, insert the
Seminar Reg. Header record.

a. Enter the following code.

PstdSeminarRegHeader.INIT;

PstdSeminarRegHeader.TRANSFERFIELDS(SeminarRegHeader);

PstdSeminarRegHeader."No." := "Posting No.";

PstdSeminarRegHeader."No. Series" := "Posting No. Series";

PstdSeminarRegHeader."Source Code" := SourceCode;

PstdSeminarRegHeader."User ID" := USERID;

PstdSeminarRegHeader.INSERT;

8. Update the dialog box.

a. Enter the following code.

Window.UPDATE(1,STRSUBSTNO(Text004,"No.",

 PstdSeminarRegHeader."No."));

9. Copy the comment lines and charges from the registration header to
the posted registration header, by calling the CopyCommentLines
and CopyCharges functions.

a. Enter the following code.

4 - 86 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
CopyCommentLines(

 SeminarCommentLine."Document Type"::"Seminar Registration",

 SeminarCommentLine."Document Type"::"Posted Seminar Registration",

 "No.",PstdSeminarRegHeader."No.");

CopyCharges("No.",PstdSeminarRegHeader."No.");

10. Set the LineCount variable to zero, and prepare the loop for the
registration lines of the current registration header.

a. Enter the following code.

LineCount := 0;

SeminarRegLine.RESET;

SeminarRegLine.SETRANGE("Document No.","No.");

IF SeminarRegLine.FINDSET THEN BEGIN

 REPEAT

 UNTIL SeminarRegLine.NEXT = 0;

END;

11. For each registration line, increase the LineCount variable by one,
update the dialog window, and make sure that Bill-to Customer No.
and Participant Contact No. are not empty. If the line should not be
invoiced, reset its Seminar Price, Line Discount %, Line Discount
Amount and Amount fields to zero. Post the participant line by
calling the PostSeminarJnlLine function. Finally, initialize and insert a
new posted registration line by transferring the fields from the
registration line, and assigning the appropriate Document No. value.

a. In the REPEAT block, enter the following code.

LineCount := LineCount + 1;

Window.UPDATE(2,LineCount);

SeminarRegLine.TESTFIELD("Bill-to Customer No.");

SeminarRegLine.TESTFIELD("Participant Contact No.");

4 - 87 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

IF NOT SeminarRegLine."To Invoice" THEN BEGIN

 SeminarRegLine."Seminar Price" := 0;

 SeminarRegLine."Line Discount %" := 0;

 SeminarRegLine."Line Discount Amount" := 0;

 SeminarRegLine.Amount := 0;

END;

// Post seminar entry

PostSeminarJnlLine(2); // Participant

// Insert posted seminar registration line

PstdSeminarRegLine.INIT;

PstdSeminarRegLine.TRANSFERFIELDS(SeminarRegLine);

PstdSeminarRegLine."Document No." := PstdSeminarRegHeader."No.";

PstdSeminarRegLine.INSERT;

12. Post the charges by calling the PostCharges function. Then post the
seminar ledger entry for the instructor and the room by calling the
PostSeminarJnlLine function.

a. After the REPEAT block, enter the following code.

// Post charges to seminar ledger

PostCharges;

// Post instructor to seminar ledger

PostSeminarJnlLine(0); // Instructor

4 - 88 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
// Post seminar room to seminar ledger

PostSeminarJnlLine(1); // Room

13. Delete the registration header, lines, comments, and charges.

a. Enter the following code.

DELETE;

SeminarRegLine.DELETEALL;

SeminarCommentLine.SETRANGE("Document Type",

 SeminarCommentLine."Document Type"::"Seminar Registration");

SeminarCommentLine.SETRANGE("No.","No.");

SeminarCommentLine.DELETEALL;

SeminarCharge.SETRANGE(Description);

SeminarCharge.DELETEALL;

14. Save the codeunit.

a. Compile and save the codeunit, and close the C/AL Editor
window.

Exercise 2: Enable Posting from the Seminar Registration
Pages
Exercise Scenario

After you complete the development of the seminar registration posting routine,
you must enable users to start the routine from the relevant pages. In Microsoft
Dynamics NAV 2013, users must be able to start posting from the Document and
the List pages for documents.

To meet the Microsoft Dynamics NAV 2013 user experience standards, you must
add the Post action to the Seminar Registration and Seminar Registration List
pages.

4 - 89 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Task 1: Modify the Pages

High Level Steps
1. Add an action to the Seminar Registration page that runs the

Seminar-Post (Yes/No) codeunit.

2. Add an action to the Seminar Registration List page that runs the
Seminar-Post (Yes/No) codeunit.

Detailed Steps
1. Add an action to the Seminar Registration page that runs the

Seminar-Post (Yes/No) codeunit.
a. Design the page 123456710, Seminar Registration.
b. Add the ActionItems action container.

c. Add the Posting action group to ActionItems.
d. Add the Post action to Posting group.
e. Define the following properties:

Property Value

Caption P&ost

Image PostDocument

Promoted Yes

PromotedCategory Process

ShortCutKey F9

RunObject Codeunit Seminar-Post (Yes/No)

f. Compile, save, and then close the page.

2. Add an action to the Seminar Registration List page that runs the
Seminar-Post (Yes/No) codeunit.
a. Design the page 123456710, Seminar Registration.
b. From the Page – Action Designer, select the rows you created in

the step 1 and copy them.

c. Close the Action Designer, and the Page Designer windows.
d. Design the page 123456713, Seminar Registration List.
e. In the Page – Action Designer page, paste the actions copied in

step b.
f. Close the Action Designer.
g. Compile, save, and then close the page.

4 - 90 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting

Module Review
Module Review and Takeaways

There are two types of posting routines in Microsoft Dynamics NAV 2013: journal
posting and document posting routines. These types of posting routines always
use the same data model and processing principles, and apply a series of
recognizable design patterns. To successfully customize Microsoft Dynamics NAV
2013 and extend it with the new functional areas that support posting routines,
you must have a thorough understanding of these standards, and follow them
consistently.

A journal in Microsoft Dynamics NAV 2013 consists of at least one of the
following:

• The Journal Line table if it exists only to support the posting routine.

• The Journal Batch and Journal Template tables if they enable users
to enter information into them from the RoleTailored client.

A journal posting routine in Microsoft Dynamics NAV 2013 consists of at least the
Check Line and Post Line codeunits if journals are only posted by the system. You
can have several more starter codeunits to handle the user interaction and batch
posting, if users manage the journals directly.

Document posting data models consist of the same set of tables as the open
(working) documents. At a minimum, this is the Header and the Line table, but
may also include any other subsidiary table.

A document posting routine in Microsoft Dynamics NAV 2013 copies the open
documents into posted documents, and depends on the TRANSFERFIELDS
function to simplify the development and maintenance of the posting process. A
document posting routine also translates the document information into at least
one but frequently many journals, and posts them as an important part of the
document posting process. A posted document therefore results not only in the
posted document tables, but also in ledger entries.

This module covered the following subjects:

• Posting in Microsoft Dynamics NAV 2013 from journals and from
documents

• Tables and codeunits of a standard posting routine

• Key aspects of programming to be aware of to maximize
performance

4 - 91 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013
Test Your Knowledge

Test your knowledge with the following questions.

1. Which three tables make up a journal?

2. Which codeunit from the journal posting routine makes sure that data journal
lines is complete and valid, before actual posting starts and before any locking
occurs?

3. What is the difference between the Post Batch and Batch Post codeunits?

4. Multiline comments can be nested. When using multiline comments you must
make sure that each open comments ({) sign is followed by a properly nested
close comments (}) sign.

() True

() False

5. A table is automatically locked when you start writing data to it.

() True

() False

4 - 92 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
6. Which C/AL function enables you to lock a table immediately and explicitly,

even if you make no write access to it?

7. When are the locks released from a locked table?

4 - 93 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

Test Your Knowledge Solutions

Module Review and Takeaways

1. Which three tables make up a journal?

MODEL ANSWER:

Journal Template, Journal Batch, and Journal Line.

2. Which codeunit from the journal posting routine makes sure that data journal
lines is complete and valid, before actual posting starts and before any locking
occurs?

MODEL ANSWER:

Check Line

3. What is the difference between the Post Batch and Batch Post codeunits?

MODEL ANSWER:

Post Batch posts lines from a single batch. Batch Post calls Post Batch for each
batch selected in the Journal Batches page.

4. Multiline comments can be nested. When using multiline comments you must
make sure that each open comments ({) sign is followed by a properly nested
close comments (}) sign.

() True

(√) False

5. A table is automatically locked when you start writing data to it.

() True

(√) False

6. Which C/AL function enables you to lock a table immediately and explicitly,
even if you make no write access to it?

MODEL ANSWER:

LOCKTABLE

4 - 94 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 4: Posting
7. When are the locks released from a locked table?

MODEL ANSWER:

The locks are released at the end of a transaction. A transaction ends
automatically when the code execution completes, when you explicitly end it
by using the COMMIT function, or when you abort the transaction by using
the ERROR function.

4 - 95 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Solution Development in Microsoft Dynamics® NAV 2013

4 - 96 Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

	Module 4: Posting
	Module Overview
	Objectives

	Prerequisite Knowledge
	Journal, Ledger and Register Tables and Pages
	Journal Tables
	The Journal Page
	Ledger Tables
	The Ledger Entries Page
	The Register Table and Page

	Journal Posting Codeunits
	Although there are many types of posting routines in Microsoft Dynamics NAV 2013, they all follow the same data structure and architectural principles.
	The Post Line Codeunit
	Journal Posting Companion Codeunits
	Journal Posting Starter Codeunits

	The Journal Posting Process
	Check Line Codeunit
	Post Line Codeunit
	Post Batch Codeunit

	Example Posting Routine
	Check Line
	Post Line
	Post Batch

	Document Posting Routines
	Document Posting Codeunit

	Documentation in Existing Objects
	Documentation Trigger Example

	Code Comments
	Single Line Modification
	Multiple Lines Modification
	Code removal

	Performance Issues
	Table Locking
	Reducing Impact on the Server
	Reducing Impact on Network Traffic

	Posting Seminar Registrations
	Solution Design
	Development
	Tables
	Pages
	Codeunits

	Lab 4.1: Reviewing and Completing the Journal and Ledger Tables
	Scenario
	Exercise 1: Reviewing the Import File Contents and Importing the Objects
	Exercise Scenario
	Task 1: Preview the .fob File Contents
	High Level Steps
	Detailed Steps

	Task 2: Import and Compile the Objects
	High Level Steps
	Detailed Steps

	Exercise 2: Reviewing the Seminar Journal Line Table
	Exercise Scenario
	Task 1: Review Table and Field Properties
	High Level Steps
	Detailed Steps

	Task 2: Review Table Code
	High Level Steps
	Detailed Steps

	Exercise 3: Reviewing Other Tables
	Exercise Scenario
	Task 1: Review the Seminar Ledger Entry Table
	High Level Steps
	Detailed Steps

	Task 2: Review the Seminar Register Table
	High Level Steps
	Detailed Steps

	Exercise 4: Customize the Source Code Setup Table and Page
	Exercise Scenario
	Task 1: Customize the Source Code Setup Table
	High Level Steps
	Detailed Steps

	Task 2: Customize the Source Code Setup Page
	High Level Steps
	Detailed Steps

	Lab 4.2: Creating Codeunits and Pages for Seminar Journal Posting
	Scenario
	Exercise 1: Create the Seminar Jnl.-Check Line Codeunit
	Exercise Scenario
	Task 1: Create the Codeunit
	High Level Steps
	Detailed Steps

	Task 2: Declare the Variables and Text Constants
	High Level Steps
	Detailed Steps

	Task 3: Create the RunCheck Function
	High Level Steps
	Detailed Steps

	Task 4: Add Code to the RunCheck Function
	High Level Steps
	Detailed Steps

	Exercise 2: Create the Seminar Jnl.-Post Line Codeunit
	Exercise Scenario
	Task 1: Create the Codeunit
	High Level Steps
	Detailed Steps

	Task 2: Declare the Variables
	High Level Steps
	Detailed Steps

	Task 3: Create the Functions
	High Level Steps
	Detailed Steps

	Task 4: Add Code to the Code Function
	High Level Steps
	Detailed Steps

	Exercise 3: Create the Seminar Ledger Entries Page
	Exercise Scenario
	Task 1: Create the Page
	High Level Steps
	Detailed Steps

	Exercise 4: Create the Seminar Reg.-Show Ledger Codeunit
	Exercise Scenario
	Task 1: Create the Codeunit
	High Level Steps
	Detailed Steps

	Task 2: Add Code to the OnRun Trigger
	High Level Steps
	Detailed Steps

	Exercise 5: Create the Seminar Registers Page
	Task 1: Create the Page
	High Level Steps
	Detailed Steps

	Lab 4.3: Creating the Tables and Pages for Posted Registration Information
	Scenario
	Exercise 1: Create the Posted Registration Tables
	Exercise Scenario
	Task 1: Create the Posted Seminar Reg. Header Table
	High Level Steps
	Detailed Steps

	Task 2: Create the Posted Seminar Reg. Line Table
	High Level Steps
	Detailed Steps

	Task 3: Create the Posted Seminar Charge Table
	High Level Steps
	Detailed Steps

	Exercise 2: Import the Posted Registration Pages
	Exercise Scenario
	Task 1: Import the Objects
	High Level Steps
	Detailed Steps

	Task 2: Review the Objects
	High Level Steps
	Detailed Steps

	Lab 4.4: Modifying Tables, Pages, and Codeunits for Resource Posting
	Scenario
	Exercise 1: Modify the Objects
	Exercise Scenario
	Task 1: Modify the Res. Ledger Entry Table
	High Level Steps
	Detailed Steps

	Task 2: Modify the Res. Journal Line Table
	High Level Steps
	Detailed Steps

	Task 3: Modify the Resource Ledger Entries Page
	High Level Steps
	Detailed Steps

	Task 4: Modify the Res. Jnl.-Post Line Codeunit
	High Level Steps
	Detailed Steps

	Lab 4.5: Creating the Codeunits for Document Posting
	Scenario
	Exercise 1: Complete the Seminar-Post Codeunit
	Exercise Scenario
	Task 1: Import the File
	High Level Steps
	Detailed Steps

	Task 2: Complete the CopyCommentLines Function
	High Level Steps
	Detailed Steps

	Task 3: Complete the CopyCharges Function
	High Level Steps
	Detailed Steps

	Task 4: Complete the PostResJnlLine Function
	High Level Steps
	Detailed Steps

	Task 5: Complete the PostSeminarJnlLine Function
	High Level Steps
	Detailed Steps

	Task 6: Complete the PostCharges Function
	High Level Steps
	Detailed Steps

	Task 7: Add Code to the OnRun Trigger
	High Level Steps
	Detailed Steps

	Exercise 2: Enable Posting from the Seminar Registration Pages
	Exercise Scenario
	Task 1: Modify the Pages
	High Level Steps
	Detailed Steps

	Module Review
	Module Review and Takeaways
	Test Your Knowledge

	Test Your Knowledge Solutions
	Module Review and Takeaways

