
12 - 1

MODULE 12: QUERIES

Module Overview
Queries specify datasets from the Microsoft Dynamics® NAV 2013 database for
retrieval in a fast and efficient way. You can use queries to retrieve data from one
or more tables as a single flat result set. You can specify how to join multiple
tables in the result set, and how to order, group, aggregate, and filter the resulting
data.

Queries retrieve data efficiently because they are always translated into a single
SELECT statement, and are executed against the underlying Microsoft SQL Server
database. Data is selected, joined, grouped, ordered, aggregated, and filtered at
the SQL Server level. This makes sure that there is a minimum effect on
performance.

You can do the following with queries:

• Use them as sources of charts in a RoleTailored client.

• Save them as XML or CSV files.

• Access them from C/AL code.

• Publish them as OData web services for later consumption from other
clients, such as Microsoft PowerPivot data analysis add-in in Microsoft
Office Excel 2010.

Objectives
• Present the Query Designer and its features.

• Explain the principles of the query design process.

• Show how to select, join, filter, aggregate, and order data.

• Show how to access queries from C/AL code.

• Explain how to export data from queries.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 2

Query Design
A query describes a dataset of Microsoft Dynamics NAV data. Queries retrieve
records from one or more tables and combine the records into rows and columns
in a single dataset. You create queries in the Microsoft Dynamics NAV 2013
Development Environment by using Query Designer.

Query Designer lets you model the query definition that Microsoft Dynamics NAV
2013 translates to a Transact-SQL statement. Microsoft SQL Server uses Transact-
SQL statements to retrieve data.

Queries have the following capabilities:

• Select subsets of fields from multiple tables.

• Join tables with different linking criteria.

• Filter tables by specifying filtering criteria.

• Group and aggregate data.

• Order data.

• Limit the number of rows to retrieve.

• Apply date methods.

In Microsoft Dynamics NAV 2013, you can use queries for the following purposes:

• Structuring multiple tables into simple datasets for fast and efficient
data access from C/AL code. For example, page 9126, Lot Numbers
by Bin FactBox, uses query 7300, Lot Numbers by Bin Code, to
populate the fact box with temporary data from the dataset.

• Defining data sources for charts in a RoleTailored client. For example,
query 760, Trailing Sales Order Qry, joins the information from
tables 36, Sales Header, and 37, Sales Line, to be shown in the
Trailing Sales Orders part of the Sales Order Processor role center.

• Publishing as OData web services to be used as data sources for
Microsoft PowerPivot data analysis add-in for Microsoft Office Excel
2010.

• Exporting the datasets as CSV or XML.

Query Designer

You model queries in the Query Designer. To model a query, you specify the
tables from which to collect data and how to link them together to create the
resulting dataset. You also specify the fields that should be included. You can
perform many other operations, such as filtering, aggregating, and grouping.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 3

The Query Designer is tabular. Each row represents an element of a query, such
as a column of a resulting dataset. For each row in the Query Designer window,
you can define the following important properties.

Property Description

Type Determines the type of the row. It can be one
of the following:
• DataItem

• Column

• Filter

Data Source Specifies the source table of a data item, or
the field from the source table for columns
and filters.

Name Specifies the name of the data item, column or
filter, because it will be referred to in the C/AL
code or through the OData web services.
The name must comply with the Common
Language Specification. This means that the
first character must be a letter. Other
characters can be any combination of letters,
whole numbers and underscores.

The following “Query Designer Window” figure shows the query 760, Trailing Sales
Order Qry, in the Query Designer window:

FIGURE 12.1: QUERY DESIGNER WINDOW

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 4

The definition of this query consists of the following:

• Data items – Tables Sales Header and Sales Line

• Columns – Fields Currency Code from the Sales Header table, and
Amount from the Sales Line table

• Filters – Fields Shipment Date, Status, and Document Date from the
Sales Header table.

When the query is executed, Microsoft Dynamics NAV 2013 translates its data
model into a Transact-SQL SELECT statement and runs it against the underlying
Microsoft SQL Server database.

Selecting Data

To select the data, you must define the tables from which you want to retrieve the
data, and the fields that you want to include from those tables. When modeling a
query in the Query Designer, a data item corresponds to a table; columns
correspond to a field in the table.

Defining Data Items

To define a new data item, insert a new row, and set Type to DataItem. Then
specify the source table in the Data Source column, by entering either the table ID
or name, or by selecting the table from the list of available tables.

The Name of the data item is automatically set to the name of the source table. If
the table name contains characters that are not supported by the Common
Language Specification, those characters are trimmed or replaced with an
underscore, depending on their location in the table name. You can replace the
name with one of your choice, as long as it complies with the Common Language
Specification.

 Note: When a row is of the DataItem type, the Data Source column directly
corresponds to the DataItemTable property. When you enter the table name in
DataItemTable property in the Properties window, it is the same as entering it in
the Data Source column in the Query Designer window.

Defining Columns

For each field that you want to include in the resulting dataset, you must define a
column in the query data model. To define a column, insert a new row under the
data item and set Type to Column. To specify fields, do any the following:

• Type the field name or number directly in the Data Source column.

• Select the field from the list of available fields in the Data Source
column.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 5

• Use the Field Menu to insert multiple fields.

Demonstration: Creating and Running a Simple Query

The following demonstration shows how to create a simple query by specifying a
data item and columns.

Demonstration Steps

1. Create a new query.
a. In Object Designer, click Query.

b. Click New.

FIGURE 12.2: QUERY DESIGNER FOR A NEW QUERY

2. Add a data item for the Item table.
a. In the Type column, select DataItem.

b. In the Data Source column, enter “Item”.

FIGURE 12.3: QUERY DESIGNER AFTER DEFINING A DATA ITEM

3. Add columns for the No., Description, Base Unit of Measure, and
Unit Cost fields.
a. In Query Designer, select the first empty row.

b. On the View menu, click Field Menu.
c. In the Field Menu window, select the No., Description, Base

Unit of Measure, and Unit Cost fields.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 6

FIGURE 12.4: FIELD MENU WITH SELECTED FIELDS

d. In the Field Menu window, click OK.

e. In the confirmation dialog box, click OK.

FIGURE 12.5: CONFIRMATION DIALOG

f. In the Query Designer window, make sure that four columns
were created for the fields that you selected in the Field Menu.
Also make sure that they have unique names.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 7

FIGURE 12.6: QUERY DESIGNER WITH A DATA ITEM AND COLUMNS

4. Save the Query object.
a. On the File menu, click Save.
b. In the Save As dialog box, in the ID field, enter “123456701”.
c. In the Name field, enter “Simple Item Query”.

d. Make sure that the Compiled check box is selected, and then
click OK.

FIGURE 12.7: SAVE AS DIALOG BOX

5. Run the Query, and then close the Query Designer.
a. On the File menu, click Run.

The “Simple Item Query Results Preview” figure shows the results of the Simple
Item Query in the preview mode.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 8

FIGURE 12.8: SIMPLE ITEM QUERY RESULTS PREVIEW

b. Close the About This Query page.

c. In the Microsoft Dynamics NAV 2013 Development Environment,
close the Query Designer window.

 Note: The preview mode shows up to 1000 rows. Use this mode as a quick
validation, but not as a final output result.

Joining Data

The biggest advantage of queries comes from their ability to join data from
multiple tables into a single resulting dataset. Therefore, you usually model
queries to include multiple data items that are joined to combine the data from
multiple tables into a single resulting dataset.

You join a data item to another data item by indenting it under another data
item. The data item under which you have indented another data item becomes
the parent data item. Each parent data item can have only one child data item.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 9

 Note: You almost never have to use the indentation buttons, because Query
Designer indents new data items automatically. When you insert a new row in the
query data model, it automatically indents under its parent. This behavior applies to
data items, columns, and filters.

When you indent data items under one another, you only specify that data from
one table will be joined to the data from another table. You have not defined how
the data will be joined. To define the data joining rules, use the following data
item properties.

Property Description

DataItemLink Sets a reference between one or more
fields of the source table of the current
data item and fields of one or more source
tables of the data item or data items that
are higher in the data model hierarchy.

DataItemLinkType Defines how the resulting dataset should
handle the rows from the current data item
if there is no match in between values that
were specified in the data item link, and
data items that are higher in the data
model hierarchy.

• You can select from the following
values:

• Use Default Values if No Match – If
there is no match, the column values of
the upper data item is set to default
values for the column data type.

• Exclude Row If No Match – If there is
no match, the row is excluded from the
resulting dataset.

• SQL Advanced Options – Uses the
value of the SQLJoinType property to
determine how the data is handled if
there is no match.

 Additional Reading: To learn more about joining tables through SQL
Advanced Options, refer to the SQL Advanced Options for Data Item Link Types
topic in Microsoft Dynamics Developer and IT Pro Help.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 10

Demonstration: Joining Data Items

This demonstration shows how to define multiple data items and join them to
create a single resulting dataset.

To prepare for this demonstration, you must change several items, and define
several purchase prices. To do this, follow these steps:

1. Open the Microsoft Dynamics NAV 2013 client for Windows.
2. In the Search box, enter “Items”, and press ENTER two times.

3. In the Items list, right-click the item 70001, and then click Edit.
4. On the Replenishment FastTab, in the Vendor No. field, enter

“30000”.
5. Close the Item Card page.

6. Repeat steps 3 to 5 for items 70002, 70003, and 70010.
7. In the Items list, on the Navigate tab in the ribbon, in the Purchases

group, click Prices.
8. In the Purchase Prices page, clear the Item No. Filter field.

9. Insert the following new purchase prices.

Vendor No. Item No. Direct Unit Cost Starting Date

10000 70040 72,00 1/1/2013

10000 70041 14,60 1/1/2014

32456123 70060 8,00 1/1/2015

10. Close the Purchase Prices page.

Demonstration Steps

1. Add a data item for the Vendor table to the Simple Item Query
query.
a. In Object Designer, select query 123456701, Simple Item Query,

and then click Design.
b. In the first empty row, in the Type column, select DataItem.
c. In the Data Source column, enter “Vendor”.

2. Add columns for the Name and City fields to the Vendor data item.
a. Select the first empty row.
b. On the View menu, click Field Menu.

c. Select the Name and City fields.
d. Click OK.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 11

e. In the confirmation dialog box, click Yes.
f. In the Name column for the Name field, enter “Vendor_Name”.

g. In the Name column for the City field, enter “Vendor_City”.

3. Add a data item for the Purchase Price table.
a. In the first empty row, in the Type column, select DataItem.

b. In the Data Source column, enter “Purchase Price”.

4. Add columns for the Currency Code and Direct Unit Cost fields.
a. Select the first empty row.

b. On the View menu, click Field Menu.
c. Select the Currency Code and Direct Unit Cost fields.
d. Click OK.
e. In the confirmation dialog box, click Yes.

f. In the Name column for the Direct Unit Cost field, enter “Price”.

FIGURE 12.9: SIMPLE ITEM QUERY WITH MULTIPLE DATA ITEMS

5. Join the Vendor data item to the Item data item.
a. Select the Vendor data item row.

b. On the View menu, click Properties.
c. In the DataItemLink property, click the AssistEdit button to

open the DataItem Link window.

d. In the Field column, select the No. field.
e. In the Reference DataItem column, select the Item data item.
f. In the Reference Field column, select the Vendor No. field.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 12

FIGURE 12.10: DATAITEM LINK FOR THE VENDOR DATA ITEM

 Note: This joins the Vendor and Item data items so that each item displays
vendors that have the same value in the No. field as the value of the Vendor No.
field in the Item table. Because the No. field in the Vendor table is also its primary
key, there can be only one vendor per item.

g. Click OK to accept changes and close the DataItem Link window.
h. Close the Properties window.

6. Join the Purchase Price data item to the Item and Vendor data
items.
a. Select the Purchase_Price data item.
b. On the View menu, click Properties.

c. In the DataItemLink property, click the AssistEdit button to open
the DataItem Link window.

d. In the Field column, select the Item No. field.

e. In the Reference DataItem column, select the Item data item.
f. In the Reference Field column, select the No. column.
g. In the next row, in the Field column, select the Vendor No. field.
h. In the Reference DataItem column, select the Vendor data item.

i. In the Reference Field column, select the No. column.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 13

FIGURE 12.11: DATAITEM LINK FOR THE PURCHASE PRICE DATA ITEM

j. Click OK to accept changes and close the DataItem Link window.
k. Close the Properties window.

7. Save and run the query, then view the results.

a. On the File menu, click Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected, and then click OK.
c. On the File menu, click Run.

FIGURE 12.12: QUERY PREVIEW WITH JOINED DATA ITEMS

d. Notice that there are several rows without a value in the
Vendor_Name and Vendor_City columns.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 14

 Note: This is because of the DataItemLinkType property value on the Vendor
data item. It is set to the default value of Use Default Values if No Match. There are
rows in the Item table where the Vendor No. field is blank. Therefore, no matching
vendor is found, and any fields from the Vendor table are blank.

8. Configure the join on the Vendor data item to only show those rows
from the Item table that have a matching row in the Vendor table,
and then run the query.

a. Select the Vendor data item.
b. On the View menu, click Properties.
c. In the DataItemLinkType property, select Exclude Row If No

Match.

d. Close the Properties window.

9. Configure the join on the Purchase Price data item to only show
those rows from the Item table that have a matching row in the
Purchase Price table.
a. Select the Purchase_Price data item.
b. On the View menu, click Properties.
c. In the DataItemLinkType property, select Exclude Row If No

Match.
d. Close the Properties window.

10. Save and run the query, then view the results.

a. On the File menu, click Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected, and then click OK.

c. On the File menu, click Run.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 15

FIGURE 12.13: QUERY PREVIEW WITH DATA ITEMS TO EXCLUDE ROWS IF
NO MATCH

d. Notice that only those rows that have a matching vendor and are
listed in the Purchase Price table are shown.

 Note: This is because of the DataItemLinkType property value on the
Purchase Price data item. This is set to the Exclude Row if No Match. There are only
a few rows in the Purchase Price table, and only those items are shown that are
represented in the Purchase Price table.

11. Reconfigure the join on the Purchase Price data item to show default
values if there is no match. This displays the purchase price list that
has all items that have a vendor, but without price information if a
purchase price is not defined.

a. Select the Purchase_Price data item.
b. On the View menu, click Properties.
c. In the DataItemLinkType property, select Use Default Values if

No Match.
d. Close the Properties window.

12. Save and run the query, and then view the results.

a. On the File menu, click Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected, and then click OK.
c. On the File menu, click Run.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 16

FIGURE 12.14: QUERY PREVIEW WITH DIFFERENT JOIN OPTIONS ON
DIFFERENT DATA ITEMS

d. Notice that all items that have a matching Vendor are shown,
regardless of whether they have a Purchase Price.

Filtering Data

There are several ways to filter the data in resulting datasets of queries:

• By defining the DataItemTableFilter property on a data item

• By defining the ColumnFilter property on a column

• By creating rows of type Filter

• By writing C/AL code in the OnBeforeOpen trigger

DataItemTableFilter Property

You use the DataItemTableFilter property on data items to apply conditions on
one or more fields of the table to limit the records in the resulting dataset of the
query. You can filter on any field in the table, not just those fields that are
included as columns in the resulting dataset.

To set up filters, you can enter either the filter syntax directly in the Value column
for the DataItemTableField property in the Properties window or click the
AssistEdit button in the Value column, and then use the Table Filter window to
set up the filters.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 17

 Note: The Table Filter window works exactly the same way as with pages,
reports, or XMLports.

The filters you define in the DataItemTableFilter property are static. Users or C/AL
code cannot override them.

ColumnFilter Property

You use the ColumnFilter property on a column to apply a filter condition on a
single field. The ColumnFilter property resembles the DataItemTableFilter
property, but there are differences. The ColumnFilter property has the following
behaviors:

• Unlike filters that are set by the DataItemTableFilter property, filters
that are set by the ColumnFilter property can be overwritten at run
time by calling the SETFILTER or SETRANGE functions from C/AL code.

• If the ColumnFilter property specifies a filter on the same field as the
DataItemTableFilter property, then the filters of the two properties are
combined. To be included in the query dataset, records must meet
the condition of both the filters. For example, if the
DataItemTableFilter property sets a filter on a field to include values
less than fifty (<50) and the ColumnFilter property sets a filter on the
same field to include values greater than twenty (>20), then the
resultant filter on the field includes values that are greater than
twenty and less than fifty.

 Note: The SETFILTER and SETRANGE functions overwrite any filter on the
same field that is set on a column or filter row by the ColumnFilter property in
Query Designer. If a SETFILTER or SETRANGE function filters on the same field as
a filter on a data item, as specified by the DataItemTableFilter property, then the
function filter and DataItemTableFilter property filter are combined.

Filter Rows

You use rows for type Filter to enable dynamic filtering of the resulting dataset on
fields that you do not want to include in the resulting dataset of a query. For
example, you might want to let users or developers to filter on a date range.
However, you do not want to include the date in the dataset.

To define a filter, insert a new row under the data item for which you want to add
a filter. Select Type of Filter, and then select the field from the table on which you
want to enable filtering.

 Note: You cannot use Field Menu to create rows of type Filter. You can only
create new filter rows by defining them individually.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 18

You can set the following properties for filter rows:

Property Description

DataSource Specifies the field to be used as a filter.
For rows of Type Filter, defining this
property has the same effect as defining
the Data Source property in the Query
Designer window.

ColumnFilter Specifies the set of predefined filters that
are applied to the field that is specified in
the DataSource property if the user or
C/AL code do not override the value of
the filter.

 Note: The ColumnFilter property of filter rows behaves the same way as with
the columns.

OnBeforeOpen Trigger

The OnBeforeOpen trigger runs before its model is translated into a Transact-SQL
statement and is executed against the underlying Microsoft SQL Server database.

You can use the OnBeforeOpen trigger to set filters on the query by using the
SETFILTER or SETRANGE C/AL functions. When you use C/AL, you can only filter
the query on columns or filters that are defined in the query. You cannot filter on
any other fields that are present in any of the data items that you have not added
to the query model as either a column or a filter.

The following example filters the query to include only those rows where
Unit_Cost is not 0.

CurrQuery.SETFILTER(Unit_Cost,'<>%1',0);

Demonstration: Defining Filters in a Query

This demonstration shows how to set various types of filters in a query.

Demonstration Steps

1. Filter the Simple Item Query to only show items that use the purchase
replenishment system by defining the DataItemTableFilter property
on a data item.
a. In Object Designer, select query 123456701, Simple Item

Query, and then click Design.

b. Select the Item data item. It is the first row in Query Designer.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 19

c. On the View menu, click Properties.
d. In the DataItemTableFilter property, click the AssistEdit button.

e. In the Field column, select the Replenishment System field.
f. In the Type column, select CONST.
g. In the Value column, enter “Purchase”.

FIGURE 12.15: TABLE FILTER FOR THE ITEM DATA ITEM

h. Click OK to accept the changes.
i. Close the Properties window.

2. Filter the query to only show those items that have unit cost defined
by setting the ColumnFilter property on a column.
a. Select the Unit_Cost column.
b. On the View menu, click Properties.

c. In the ColumnFilter property, click the AssistEdit button to open
the Column Filter window.

d. In the Column field, make sure that the Unit_Cost value is
present.

e. In the Type field, select FILTER.
f. In the Value field, enter “<>0”.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 20

FIGURE 12.16: COLUMN FILTER FOR THE UNIT_COST COLUMN.

g. Click OK to accept changes and close the Column Filter window.

h. Close the Properties window.

3. Enable users to dynamically filter the query on the Vendor No. and
Vendor Posting Group fields without including the fields in the
resulting dataset.
a. Select the No. field under the Item data item.
b. On the Edit menu, click New.
c. In the Type column, select Filter.

d. In the Data Source column, select the Vendor No. field.
e. Select the Name field under the Vendor data item.
f. On the Edit menu, click New.
g. In the Type column, select Filter.

h. In the Data Source column, select the Vendor Posting Group
field.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 21

FIGURE 12.17: SIMPLE ITEM QUERY WITH FILTERS

4. Compile, save, close, and then run the query. Then, view the results.
a. On the File menu, click Save.

b. In the Save dialog box, make sure that the Compiled check box
is selected, and then click OK.

c. In Object Designer, select query 123456701, Simple Item
Query, and then click Run.

 Note: The query now only shows those records where the Replenishment
System field in the Item table is set to Purchase, and where Unit Cost field is
different from 0. The query does not include Vendor_No and Vendor_Posting_Group
information. However, you can dynamically filter on this information through C/AL
code.

Aggregating Data

In a query, you use a totals method to perform a calculation on a column and
return the calculated value in the resulting dataset. This calculation is frequently
called aggregation.

You typically use aggregations with grouping to find totals for specified groups of
columns. For example, you can sum the values in the Amount field per G/L
account in the G/L Entry table or find the average Quantity per item in the Item
Ledger Entry table. Totals methods in Microsoft Dynamics NAV 2013 queries
correspond directly to Microsoft SQL Server aggregate functions.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 22

Use the following totals methods.

Method Type Description

Sum Calculates the sum of the values of the
specified column for all records that are
grouped within the dataset.

Average Calculates the average value in the
specified column in a group.

Min Retrieves the lowest value in the specified
column in a group.

Max Retrieves the highest value in the
specified column in a group.

Count Returns the number of records from data
item tables that represent a group in the
dataset.

To set the totaling methods in a Microsoft Dynamics NAV 2013 query, follow
these steps:

1. For a column, set the MethodType property to Totals.
2. In the Method property, select the appropriate totals method, for

example, Average.

 Note: When you apply a totals method to a column, and you have not
changed the Name from the default, the Name of the column is automatically
prefixed with the name of the totals method that is being applied. It reflects the fact
that the column is aggregated. For example, when you apply the Average method
to the Amount column, the name is automatically changed to Average_Amount.
The column must be of type Decimal.

Ordering Data

You can order the data in a resulting dataset of a query by any number of
columns that are contained in the query. To define the sorting order, set the
OrderBy property on the query.

To access the OrderBy property, in Query Designer, select the first blank line, and
then, on the View menu, click Properties.

To modify the OrderBy property, you can click the AssistEdit button next to the
property. In the Order By window, you add a column and set its direction to
ascending or descending. You can sort on multiple columns by adding additional
columns to the Order By window. The query will sort the results by the first
column in the Order By window, then by the second column, and so on.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 23

You can also type values directly in the Value column of the OrderBy property in
the Properties window. To sort on multiple columns, separate each column with a
comma.

 Note: You cannot sort by a column that is not present in the resulting dataset.
If you want to order by such a column, you must first add it to the query model, and
then include it in the OrderBy property.

Date Methods

When retrieving Date or DateTime fields from a Microsoft Dynamics NAV 2013
database, you may want to retrieve only the year, month or day, instead of the
entire date. This is especially true when you group and total the data. For
example, you may want to group revenue by customer and by year, or find
average consumption of a production BOM component by month. You can
achieve this by selecting a date method for a Date or DateTime column in the
Query Designer.

Date methods are as follows:

• Day

• Month

• Year

To apply a date method for a column, follow these steps:

1. In the column definition for a Date or DateTime column, set the
MethodType property to Date.

2. In the Method property, select the appropriate date method,
depending on which date part you want to retrieve.

 Note: When you apply a date method to a Date or DateTime column, and
you have not changed the Name from the default, the Name of the column is
automatically prefixed with the name of the date method that is being applied. For
example, when you apply the Year date method to the Posting Date column, the
name is automatically changed to Year_Posting_Date.

On the SQL server, date and time values are processed by using Coordinated
Universal Time (UTC). If Microsoft Dynamics NAV solution uses a time zone other
than UTC and the field on which you apply the date method has a data type of
DateTime, then there might be a difference between the date value that is
returned in the dataset for the field, and the actual day, month, or year for the
field in the table. This occurs when the corresponding UTC date for a field falls on
the next day or previous day because of the time of day and the time zone of
Microsoft Dynamics NAV solution.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 24

The differences in day, month, or year occur when date and time values are
retrieved from the Microsoft Dynamics NAV database table. These values are
converted from the regional settings of the Microsoft Dynamics NAV solution to
the UTC date and time. The day, month, or year is calculated on the SQL server,
and then returned to the query dataset as an integer. This integer does not
consider the regional settings of the Microsoft Dynamics NAV solution.

To avoid this condition, you should use the date method on fields that have a
Date data type instead of a DateTime data type when possible. You can also
return the DateTime value and implement post processing for the day, month,
and year as needed.

Demonstration: Aggregate and Order the Data

The following demonstration shows how to aggregate the data and order the
resulting dataset of a query.

Demonstration Steps

1. Order the Simple Item Query by vendor name in alphabetical order,
and by price from highest to lowest.
a. In Object Designer, select query 123456701, Simple Item

Query, and then click Design.

b. Select the first blank row, and then on the View menu, click
Properties.

c. In the OrderBy property, click the AssistEdit button to open the
Order By window.

d. In the Column field on the first row, select the Vendor_Name
column. Make sure that Direction is set to Ascending.

e. In the Column field on the second row, select the Price column.
Make sure that Direction is set to Descending.

FIGURE 12.18: THE ORDER BY WINDOW FOR THE SIMPLE ITEM QUERY

f. Click OK to accept changes and close the Order By window.
g. Close the Properties window.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 25

2. Configure the query to only show the average price for each item.
a. For the Price column, set the Method Type property to Totals,

and the Method property to Average.
b. Notice that for each row of the Type column, the Group By

property is selected automatically.

FIGURE 12.19: THE SIMPLE ITEM QUERY IN QUERY DESIGNER, AFTER
APPLYING A TOTALS METHOD

3. Save, compile, close, and then run the query. Then, view the results.

a. On the File menu, click Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected, and then click OK.
c. Close the Query Designer.
d. In Object Designer, select query 123456701, Simple Item

Query, and then click Run.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 26

FIGURE 12.20: ORDERED QUERY RESULTS AFTER APPLYING A TOTALS
METHOD

e. Notice that the results are sorted first by Vendor_Name in
ascending (alphabetical) order, and then by Price in descending
order. Also, the average price is shown.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 27

Lab 12.1: Using a Query from a Chart
Scenario

Susan, the sales order processor at CRONUS International Ltd., needs a chart that
shows the top ten customers by revenue. She wants to access this chart from her
Role Center.

Isaac and Simon, the consultants at the ISV company that implements Microsoft
Dynamics NAV 2013 for CRONUS International Ltd., will help Susan by creating
and customizing the necessary objects, and then configure Microsoft Dynamics
NAV 2013 according to Susan’s requirements.

Objectives

The objectives of this lab are:

• Learn how to create a new query.

• Understand how to set query and data item properties.

• Understand how to use totaling.

• Understand how to use a query in a chart.

Exercise 1: Creating a query
Exercise Scenario

Isaac, the business software developer, creates a new query object that selects the
data that Susan wants to see in a chart part on her role center. The query will join
the data from the Customer and Cust. Ledger Entries tables, show only those
customers who have ledger entries of type Invoice or Credit Memo, and display
the Amount (LCY) column totaled by the Sum method.

Task 1: Create a new query object

High Level Steps
1. Create a new query object.
2. Select table 18, Customer as the first data item.

Detailed Steps
1. Create a new query object.

a. On the Tools menu, click Object Designer.
b. In the Object Designer window, click Query.
c. Click New to open the Query Designer.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 28

2. Select table 18, Customer as the first data item.
a. In the Query Designer window, make sure that Type property is

DataItem.
b. In the DataSource property, select table 18, Customer.

Task 2: Add another data item

High Level Steps
1. Select table 21, Cust. Ledg. Entry as the second data item, indented

under Customer.

2. Set the properties for Cust_Ledger_Entry data item to link to the
Customer data item, where the Customer No. field of
Cust_Ledger_Entry is equal to the No. field of the Customer table,
and to exclude the customers for which there are no ledger entries.

3. Filter the data item to show only entries of type Invoice and Credit
Memo.

Detailed Steps
1. Select table 21, Cust. Ledg. Entry as the second data item, indented

under Customer.
a. In the Query Designer window, move to the last row until the

new row indicator is shown.

b. Set Type to DataItem, and in the DataSource property select
table 21, Cust. Ledg. Entry.

2. Set the properties for Cust_Ledger_Entry data item to link to the
Customer data item, where the Customer No. field of
Cust_Ledger_Entry is equal to the No. field of the Customer table,
and to exclude the customers for which there are no ledger entries.

a. Select the Cust_Ledger_Entry data item, on the View menu click
Properties.

b. In the Properties window for the Cust_Ledger_Entry data item, in
the DataItemLink property click the AssistEdit button.

c. In the DataItem Link window, select Customer No. as Field,
Customer as Reference DataItem, and No. as Reference Field.

d. Click OK.
e. In the Properties window for the Cust_Ledger_Entry data item,

select Exclude Row If No Match in the DataItemLinkType
property.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 29

3. Filter the data item to show only entries of type Invoice and Credit
Memo.

a. In the Properties window for the Cust_LedgerEntry data item, in
the DataItemTableFilter property, click the AssistEdit button.

b. In the Table Filter window, in the Field column select Document
Type, in the Type column select FILTER, and then in the Value
column enter “Invoice|Credit Memo”.

c. Click OK.
d. Close the Properties window for the Cust_Ledger_Entry data

item.

Task 3: Add columns to the query

High Level Steps
1. Add columns for the No., Name and Customer Posting Group fields

to the Customer data item.
2. Add a column for field Amount (LCY) to the Cust_Ledger_Entry data

item.

3. Specify the Sum totaling for the Amount (LCY) column.

Detailed Steps
1. Add columns for the No., Name and Customer Posting Group fields

to the Customer data item.
a. In the Query Designer window, select the Customer data item.
b. On the View menu, click Field Menu.
c. In the Field Menu window, select the No., Name and Customer

Posting Group fields.
d. Click OK.

2. Add a column for field Amount (LCY) to the Cust_Ledger_Entry data
item.
a. In the Query Designer window, select the Cust_Ledger_Entry

data item.

b. On the View menu, click Field Menu.
c. In the Field Menu window, select the Amount (LCY) field.
d. Click OK.

3. Specify the Sum totaling for the Amount (LCY) column.
a. In the Query Designer window, select the Amount_LCY column.
b. Select Totals as the Method Type property.
c. Make sure that Sum is selected as the Method property.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 30

Task 4: Set query properties

High Level Steps
1. Set the query properties to order the results by sum of Amount (LCY)

in descending order.

2. Set the query properties to return only the top 10 rows.

Detailed Steps
1. Set the query properties to order the results by sum of Amount (LCY)

in descending order.
a. In the Query Designer window, move to the last row until the

new row indicator is shown.
b. On the View menu, click Properties.

c. In the OrderBy property, click the AssistEdit button.
d. Select Sum_Amount_LCY as Column, and Descending as

Direction.
e. Click OK

.
2. Set the query properties to return only the top 10 rows.

a. In the Properties window for the query, specify “10” as
TopNumberOfRows.

b. Close the Properties window for the query.

Task 5: Save the query

High Level Steps
1. Save the newly defined query object as 123456701, Top 10 Cust. by

Revenue.
2. Close the Query Designer.

Detailed Steps
1. Save the newly defined query object as 123456701, Top 10 Cust. by

Revenue.

a. In the Query Designer window, on the File menu, click Save.
b. In the Save As dialog box, in the ID text box, enter “123456702”.
c. In the Name text box, enter “Top 10 Cust. By Revenue”, and then

click OK.

2. Close the Query Designer.
a. On the File menu, click Close.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 31

Results

A new query object, 123456702, Top 10 Cust. by Revenue, that joins the data from
the Customer and Cust. Ledger Entry tables

Exercise 2: Creating a chart
Exercise Scenario

Simon, the consultant, creates a new chart setup record in Microsoft Dynamics
NAV 2013, to show the data from the query that was created by Isaac in the
previous exercise. The chart will be a column chart, and will show
Sum_Amount_LCY as a measure that is aggregated by the Sum method over the
customer number as the X-axis dimension.

Task 1: Create a new chart setup

High Level Steps
1. Open the Microsoft Dynamics NAV 2013 client for Windows.
2. Create a new chart setup.

Detailed Steps
1. Open the Microsoft Dynamics NAV 2013 client for Windows.

a. On the Start menu, click Microsoft Dynamics NAV 2013.

2. Create a new chart setup.
a. In the Microsoft Dynamics NAV 2013 client for Windows, click

Departments > Application Setup > RoleTailored Client >
Charts.

b. On the Home tab, in the New group, click New.

Task 2: Configure the Chart Setup Card

High Level Steps
1. Set the new chart ID to 123456702-01 and name it as Top 10 Cust. by

Revenue.
2. Set the data source of the chart to query 123456702, Top 10 Cust. by

Revenue.
3. Define the Sum_Amount_LCY column as the measure. Set

Aggregation to Sum, and Graph Type to Column.
4. Define the No column as the X-Axis dimension.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 32

Detailed Steps
1. Set the new chart ID to 123456702-01 and name it as Top 10 Cust. by

Revenue.
a. In the Chart Setup Card page, in the ID field, enter “123456702-

01”.

b. In the Name field, enter “Top 10 Cust. by Revenue”.

2. Set the data source of the chart to query 123456702, Top 10 Cust. by
Revenue.

a. In the Chart Setup Card window, in the Source Type field, select
Query.

b. In the Source ID field, enter “123456702”.

3. Define the Sum_Amount_LCY column as the measure. Set
Aggregation to Sum, and Graph Type to Column.
a. On the Measures (Y-Axis) FastTab, in the Data Column field for

Required Measure row, select Sum_Amount_LCY.

b. In the Aggregation field, select Sum
c. In the Graph Type field, select Column.

4. Define the No column as the X-Axis dimension.
a. On the Dimensions (X- and Z-Axes) FastTab, in the X-Axis field,

enter “No”.
b. In the X-Axis Title field, enter “No”.

c. Click OK to close the page.

Results

A new chart setup record that shows data from query 123456702, Top 10 Cust. by
Revenue.

Exercise 3: Adding the chart to the Role Center.
Exercise Scenario

Susan customizes her Role Center to include the chart part that Simon configured
in the previous exercise.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 33

Task 1: Customize the Role Center

High Level Steps
1. Customize the Role Center.

Detailed Steps
1. Customize the Role Center.

a. In the Microsoft Dynamics NAV 2013 client for Windows, click
Home to navigate to the Role Center.

b. Click the Application menu, then click Customize > Customize
This Page.

c. In the Customize the Role Center window, in Role Center
Layout, click Microsoft Outlook.

d. In the Available Parts list, click Chart Part, and then click
Add>>.

e. Click Customize Part.
f. In the Customize Chart window, select chart 123456702-01 Top

10 Cust. by Revenue, and then click OK.
g. Click OK to close the Customize the Role Center window.

Task 2: Preview the chart

High Level Steps
1. Restart the Microsoft Dynamics NAV 2013 client for Windows.
2. View the new chart part.

Detailed Steps
1. Restart the Microsoft Dynamics NAV 2013 client for Windows.

a. Close the Microsoft Dynamics NAV 2013 client for Windows.

b. Start the Microsoft Dynamics NAV 2013 client for Windows.

2. View the new chart part.
a. Make sure that the Top 10 Cust. by Revenue part is shown

below the Outlook part.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 34

Accessing Queries from C/AL
Queries can be an effective replacement for iterative access to data in Microsoft
Dynamics NAV 2013 especially when you use multiple nested data iterations in
the C/AL code. Query object includes a set of C/AL functions that you can use to
access data, to filter the resulting dataset of a query, or to export the resulting
dataset to the CSV or XML format.

Running Queries

You can run a query C/AL to iterate through the resulting dataset
programmatically. Even though the principles of accessing a query resemble those
of accessing tables, there is a different set of functions on a query object.

OPEN

The OPEN function runs a query object and generates a dataset that you can
read. It also puts the query in the reading state.

The OPEN function returns a Boolean value. This indicates whether the query
opened successfully. If you omit this optional return value and if the query does
not open successfully, then a run-time error occurs. If you include a return value,
then no run-time error occurs when the OPEN function is called and you will
handle any errors.

If the OPEN function fails, you cannot call other functions or access the data in
the query. If you try to do this, a run-time error occurs.

 Note: The OPEN function only runs the query object and generates a dataset.
It does not return the first row of the result set. To access any row, you must call
READ.

READ

The READ function reads a single row from the resulting dataset of a query. The
function returns a Boolean value that indicates if a row was retrieved.

When you call the READ function, the next row in the dataset query is retrieved.
When the query is in the reading state, you can access the values of columns in
the row in the same manner that you access the fields in a record variable.

You can call the READ function multiple times after the OPEN function to read
consecutive rows in the dataset. The first READ function call retrieves the first row
from the resulting dataset. Each successive READ function call retrieves the next
row from the dataset.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 35

CLOSE

The CLOSE function closes a query dataset and returns the query to the initialized
state. It lets the NAV Server know that you are finished using this object.

Calling CLOSE explicitly is optional. This function is called implicitly in any of the
following situations:

• When the query variable goes out of scope

• If you call the OPEN function on a query variable that is currently
open

• If you call the SETFILTER or SETRANGE functions on a query variable
that is currently open

The CLOSE function does not clear any filters that you set on the query
programmatically. If you want to clear such filters, then you must call the CLEAR
function.

The following example shows how to open a query, iterate through it, and then
close it from C/AL code.

Opening, iterating through, and closing a query

WITH SimpleItemQuery DO BEGIN

 IF OPEN THEN BEGIN

 WHILE READ DO BEGIN

 // Do some logic

 END;

 CLOSE;

 END;

END;

Column Access

You can access the columns of a query on a query variable in a manner that is
similar to accessing the fields of a table on a record variable. When you read
values from columns C/AL, you reference columns exactly as you reference record
fields.

The following example shows how to read a value from the Price column of the
Simple Item Query.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 36

Accessing a column of a query from C/AL

ItemPrice := SimpleItemQery.Price;

Programmatically, you can only access those columns that are been defined in the
query, but not any other fields that exist in the tables from which the query is
constructed.

You can see the list of all columns of a query in the Symbol Menu.

FIGURE 12.21: ACCESSING QUERY COLUMNS IN THE C/AL SYMBOL MENU

Filtering Queries

You can filter the data in queries to narrow the resulting datasets. You can only
filter a query on a field which is included as a column or a filter in the query. You
use the SETRANGE and SETFILTER functions to set filters on a query variable.

When you use the SETFILTER and SETRANGE functions to define a filter on the
same field that is already filtered through the ColumnFilter property in Query
Designer, then the filter that is defined in the ColumnFilter property is replaced
by the filter that you set in the C/AL code.

If you use SETFILTER or SETRANGE functions on the same field that is included in
the DataItemTableFilter property of a data item, then the function filter and
DataItemTableFilter property filter are combined.

The following example shows how to use the SETFILTER and SETRANGE
functions to filter the resulting dataset of a query.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 37

Using SETFILTER and SETRANGE on a query

PendingProdOrders.SETRANGE(Status,1,3);

PendingProdOrders.SETFILTER(Due_Date,'>0D|<%1',WORKDATE);

IF PendingProdOrders.OPEN THEN

 WHILE PendingProdOrders.READ DO BEGIN

 Item.GET(PendingProdOrders.Item_No);

 Item.TESTFIELD(Blocked,FALSE);

 END;

PendingProdOrders.CLOSE;

 Note: Because no data is retrieved before the query is open, referencing
columns in any way, including for specifying values of filtering functions, is not
allowed. Therefore, in this example, the SETRANGE function is called on the Status
column by providing the integer, instead of option values. If you specify the range
by using
SETRANGE(Status,PendingProdOrder.Status::Planned,PendingProdOrder.Status::Rele
ased) before the query is open, a run-time error occurs.

Calling SETRANGE or SETFILTER functions on a query that is already open
automatically closes the query. To access data from such a query, you must make
sure that you call OPEN before you call READ. The best practice is to set filters
before the first call to OPEN, and to close the query by calling CLOSE immediately
after all the rows are read.

You can have multiple calls to the SETFILTER function. If the SETFILTER function
calls set filters on different columns, then the filters are combined and applied to
the dataset. If consecutive SETFILTER function calls set filters on the same column,
then the last SETFILTER function call is applied to the column.

TOPNUMBEROFROWS

When you design a query, you can set the limit for the number of rows that the
query returns by specifying its TopNumberOfRows property in the Query
Designer window. At run time, you can check or change the value of this property
by using the TOPNUMBEROFROWS function. If you limit the number of rows by
defining the TopNumberOfRows property, the TOPNUMBEROFROWS function
overwrites the TopNumberOfRows property.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 38

If the value of the TopNumberOfRows property is undefined, the
TOPNUMBEROFROWS function returns 0. If you programmatically set
TOPNUMBEROFROWS to 0, all rows are returned.

The following example shows how to programmatically limit the number of rows
that are returned from a query to 10 rows.

Calling TOPNUMBEROFROWS

SimpleItemQuery.TOPNUMBEROFROWS := 10;

 Note: You can call filtering and the TOPNUMBEROFROWS functions on the
CurrQuery variable from the OnBeforeOpen trigger in the query object. CurrQuery
variable is implicit in the C/AL code of the query object. You do not have to
reference it directly.

Saving Result Sets

You can save the resulting dataset of the query to an external file from C/AL. You
can use the SAVEASCSV function to save the results to a comma-separated values
(CSV) file, and use the SAVEASXML function to save the results to an XML file.

You can always call SAVEASCSV and SAVEASXML functions directly, without
calling the OPEN, READ or CLOSE functions first. When SAVEASCSV or
SAVEASXML functions are called, the query is implicitly opened, read and then
closed. If you call SAVEASCSV or SAVEASXML functions on a query that is
already opened, then the dataset is first retrieved again from the Microsoft
Dynamics NAV 2013 database. After the dataset is saved to the file, the query is
left in the closed state. This makes any later call to the READ function invalid. You
must reopen the query to continue reading the data.

 Best Practice: Always call SAVEASCSV or SAVEASXML functions on
separate variables. Never call them on variables that are used for iterating through
the result set.

Both SAVEASCSV and SAVEASXML functions return a Boolean value that
indicates whether the query was successfully saved. If you omit this optional
return value and the query wasn’t successfully saved, then a run-time error occurs.

The following example shows how to export a top number of rows in the resulting
dataset of a query to an XML file.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 39

Using TOPNUMBEROFROWS and SAVEASXML functions

// Top10ProdOrders is Query 5402

// Text001 is ‘The file was not saved, but execution continues. The problem was:
%1’

Top10ProdOrders.TOPNUMBEROFROWS(5);

IF NOT Top10ProdOrders.SAVEASXML('C:\Temp\Top5Production.xml') THEN

 MESSAGE(Text001,GETLASTERRORTEXT);

Saving to CSV

A CSV file stores the data in a plain text format. The files created through the
SAVEASCSV function resemble the variable text format files that are exported
from an XMLport. Each row of data in a CSV file resides in a separate line. The first
line of a CSV file that is created through the SAVEASCSV function always contains
the column names of the query. The column names are specified in the Name
property of each column in the definition of the query.

 Note: CSV files follow a fixed set of rules that make it easy to import them in
other applications, such as Microsoft Office Excel.

Saving to XML

Unlike the XML files that are exported from XMLports, the structure of the XML
files that are created by SAVEASXML function always follows the same fixed
structure. The data in the resulting XML document does not belong to a
namespace, the root element is always <DataSet>, and each row is represented as
a <Result> element. Columns are represented as child elements of the <Result>
element. The name of each element that represents a column is equal to the
name of the column as specified in its Name property. The XSD schema that
describes the format of the resulting XML file is embedded in the file.

The “XML File Created by SAVEASXML” figure shows the XML file that is created
by the SAVEASXML function. This includes the embedded schema.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 40

FIGURE 12.22: XML FILE CREATED BY SAVEASXML

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 41

Lab 12.2: Using Queries in C/AL
Scenario

Julia, the marketing executive at CRONUS International Ltd., wants to be able to
automatically remove any credit limits from the most valuable customers as a part
of the new sales and marketing strategy. She wants the function to automatically
select the top ten customers and show them in a modal list page. If the modal list
page is confirmed, Julia wants it to reset the Credit Limit (LCY) field to zero for
all the customers in the modal list page. She wants this function to be available
from her Role Center.

Isaac, the business software developer at the ISV company that implements
Microsoft Dynamics NAV 2013 for CRONUS International Ltd., will create and
customize the necessary objects to meet Julia’s requirements.

Objectives

• Access queries through C/AL.

• Filter queries programmatically.

• Iterate through query resulting datasets.

Exercise 1: Create a codeunit which uses a query
Exercise Scenario

Isaac, the business developer, creates a codeunit that iterates through the Top 10
Cust. by Revenue query. This codeunit populates a temporary Customer table,
and then shows the Customer List page over this temporary table. When the
Customer List page is closed, the confirmation dialog box is displayed. The dialog
box asks whether the credit limit should be reset to zero. If the user confirms by
clicking Yes, the codeunit applies the new credit limit to the selected customers.

Task 1: Create a codeunit

High Level Steps
1. Create a new codeunit.
2. Save the codeunit as 50111, Reset Top 10 Cust. Cred. Limit.

Detailed Steps
1. Create a new codeunit.

a. On the Tools menu, click Object Designer.
b. In the Object Designer window, click Codeunit.
c. Click New.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 42

2. Save the codeunit as 50111, Reset Top 10 Cust. Cred. Limit.
a. On the File menu, click Save.

b. In the Save As dialog box, in the ID field, enter “50111”.
c. In the Name field, enter “Reset Top 10 Cust. Cred. Limit”, and

then click OK.

Task 2: Declare variables

High Level Steps
1. Declare a global variable for query 123456702, Top 10 Cust. by

Revenue.
2. Declare a global variable for table 18, Customer.
3. Declare a global variable for table 18, Customer and make it

temporary.

4. Declare a global text constant Text001, and set its value to “Do you
want to reset the %1 to %2 for these customers?”

5. Declare a global text constant Text002, and set its value to “Action
completed successfully.”

Detailed Steps
1. Declare a global variable for query 123456702, Top 10 Cust. by

Revenue.

a. In the C/AL Editor window for the Codeunit 50111, on the View
menu, click C/AL Globals.

b. In the C/AL Globals window, declare a new variable and set its
Name to Top10Cust.

c. Set its Type to Query, and then set its Subtype to Top 10 Cust. by
Revenue.

 Detailed Steps: You can also enter “123456702” in the Subtype property.

2. Declare a global variable for table 18, Customer.
a. In the C/AL Globals window, declare a new variable, and set its

Name to Cust.
b. Set its Type to Record, and then set its Subtype to Customer.

3. Declare a global variable for table 18, Customer and make it
temporary.
a. In the C/AL Globals window, declare a new variable, and set its

Name to CustTmp.

b. Set its Type to Record, and then set its Subtype to Customer.
c. Select the CustTmp variable, and then on the View menu click

Properties.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 43

d. In the Properties window for the CustTmp variable, in the
Temporary property select Yes.

e. Close the Properties window.

4. Declare a global text constant Text001, and set its value to “Do you
want to reset the %1 to %2 for these customers?”

a. In the C/AL Globals window, on the Text Constants tab, declare
a new text constant.

b. Set the Name of the text constant to Text001.
c. Set the ConstValue of the text constant to “Do you want to reset

the %1 to %2 for these customers?”

5. Declare a global text constant Text002, and set its value to “Action
completed successfully.”

a. In the C/AL Globals window, on the Text Constants tab, declare
a new text constant.

b. Set the Name of the text constant to Text002.
c. Set the ConstValue of the text constant to “Action completed

successfully.”
d. Close the C/AL Globals window.

Task 3: Iterate through the query

High Level Steps
1. Write code that filters the Top10Cust variable to only include those

rows which have Sum_Amount_LCY higher than zero.
2. Write code that iterates through the Top10Cust variable.
3. Write code so that each iteration cycle copies the customer

information into the CustTmp temporary table.

Detailed Steps
1. Write code that filters the Top10Cust variable to only include those

rows which have Sum_Amount_LCY higher than zero.

a. In the C/AL Editor window, add the following code to the OnRun
trigger:

Top10Cust.SETFILTER(Sum_Amount_LCY,'>%1',0);

2. Write code that iterates through the Top10Cust variable.

a. In the C/AL Editor window, add the following code to the OnRun
trigger:

Top10Cust.OPEN;

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 44

WHILE Top10Cust.READ DO BEGIN

END;

Top10Cust.CLOSE;

3. Write code so that each iteration cycle copies the customer
information into the CustTmp temporary table.
a. In the C/AL Editor window, enter the following code to the

BEGIN/END block of the iteration.

 Cust.GET(Top10Cust.No);

 CustTmp := Cust;

 CustTmp.INSERT;

Task 4: Apply the business rule

High Level Steps
1. Add a function that resets the credit limit for all customers in the

CustTmp temporary variable, and then displays the Text002 as an
information message. Set the function name to ResetCreditLimit.

2. Add a function that asks for a confirmation by showing the text
constant Text001. If it is confirmed, it runs the ResetCreditLimit
function. Set the function name to ConfirmReset.

3. Show the top ten customer list as a modal page. If the user clicks OK
in the page, run the ConfirmReset function.

4. Compile and save the codeunit.

Detailed Steps
1. Add a function that resets the credit limit for all customers in the

CustTmp temporary variable, and then displays the Text002 as an
information message. Set the function name to ResetCreditLimit.
a. In the C/AL Editor window, on the View menu, click C/AL

Globals.
b. In the Functions tab, declare a new function named

ResetCreditLimit.
c. Close the C/AL Globals window.

d. Enter the following code in the ResetCreditLimit function
trigger.

IF CustTmp.FINDSET THEN

 REPEAT

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 45

 Cust.GET(CustTmp."No.");

 Cust."Credit Limit (LCY)" := 0;

 Cust.MODIFY;

 UNTIL CustTmp.NEXT = 0;

MESSAGE(Text002);

2. Add a function that asks for a confirmation by showing the text
constant Text001. If it is confirmed, it runs the ResetCreditLimit
function. Set the function name to ConfirmReset.
a. In the C/AL Editor window, on the View menu, click C/AL

Globals.

b. In the Functions tab, declare a new function named
ConfirmReset.

c. Close the C/AL Globals window.
d. Enter the following code in the ConfirmReset function trigger.

IF CONFIRM(Text001,

 FALSE,

 Cust.FIELDCAPTION("Credit Limit (LCY)"),

 0)

THEN

 ResetCreditLimit;

3. Show the top ten customer list as a modal page. If the user clicks OK
in the page, run the ConfirmReset function.
a. Append the following code to the end of the OnRun trigger.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 46

IF PAGE.RUNMODAL(PAGE::"Customer List",CustTmp) = ACTION::LookupOK THEN

 ConfirmReset;

4. Compile and save the codeunit.
a. Click File > Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected, and then click OK.

c. Close the C/AL Editor window.

Task 5: Test the codeunit

High Level Steps
1. Run the codeunit to verify its functionality.

Detailed Steps
1. Run the codeunit to verify its functionality.

a. In Object Designer, select the codeunit 50111, Reset Top 10 Cust.
Cred. Limit.

b. Click Run.

c. Verify that the confirmation dialog is displayed. Click Yes.
d. Verify that the information message is displayed. Click OK.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 47

Advanced Query Concepts
When you use queries, it helps if you understand how accessing queries in the
C/AL code relates to accessing tables. Also, it helps if you understand how queries
map to Transact-SQL statements.

Queries and Records

When you are retrieving data, you can use records and queries and iterate
through datasets in a similar manner. The C/AL functions that you use with
records and queries are not the same. However, they achieve the same goal.

The following table shows a side-by-side comparison of the C/AL functions that
you use when you access data with records and queries.

Goal Record Query

Initiate iteration through
a dataset.

FIND(‘-‘)
FINDSET

OPEN

Retrieve the next record
from a dataset.

NEXT READ

Close the dataset. Not needed CLOSE

Retrieving data with records and queries is very different. With records, the
FIND(‘-‘) and FINDSET functions also retrieve the first record, whereas with
queries, the OPEN function merely translates the query model into a Transact-SQL
statement and runs it against Microsoft SQL Server. With records, after the initial
FIND(‘-‘) or FINDSET, the record is already retrieved, and you can immediately
access the fields. With queries, you must call READ one time before you can
access the columns. Because of this, you write the iteration loops differently. With
records, you use the REPEAT..UNTIL compound statement. With queries, you use
the WHILE..DO compound statement.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 48

The following table shows the comparison between record and query iteration
loops.

Record Iteration Query Iteration

IF FIND(‘-‘) THEN

 REPEAT

 // Do some processing

 UNTIL NEXT;

IF OPEN THEN

 WHILE READ DO BEGIN

 // Do some processing

 END;

Except for the syntactical differences in how you iterate through datasets with
records and queries, there are also functional differences between retrieving
records by using FIND(‘-‘) or FINDSET, and using queries. Because of those
differences, you cannot directly replace traditional record-based iteration with
queries.

The following table summarizes different data access scenarios, and makes
recommendations about the data access feature of Microsoft Dynamics NAV 2013
that you should use.

Scenario Use Remarks

Reading a partial set of
data from a single table

FIND(‘-) FIND(‘-‘) retrieves the first
50 rows, and requests the
rest only if you must read
beyond the initial 50
rows. If your iteration
does not have to read
beyond the initial 50
rows, use FIND(‘-‘).

Reading a complete set
of data from a single
table

FINDSET FINDSET retrieves all
rows, regardless of the
size of the table.

Modifying data FIND(‘-‘) or FINDSET Queries cannot handle
the writing of data.
Therefore, when you must
write data back, you must
use either FIND(‘-‘) or
FINDSET.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 49

Scenario Use Remarks

Repetitive access to same
datasets

FIND(‘-‘) or FINDSET Resulting datasets of
queries are never cached.
Therefore, when
repetitively accessing the
same datasets, use
FIND(‘-‘) or FINDSET to
take advantage of
Microsoft Dynamics NAV
2013 caching capabilities.

Reading from multiple
tables

Query A query translates into a
single Transact-SQL
statement that returns a
single dataset. Reading
from multiple tables with
records requires multiple,
usually nested, iterations.
These iterations
frequently decrease
performance.

Reading a limited subset
of fields from multiple
tables, especially if
Microsoft SQL Server can
use a covering index
strategy

Query FIND(‘-‘) and FINDSET
retrieve and return all
fields from the table. This
makes them slower and
requires more resources.
Query only retrieves and
returns those fields that
are declared as columns
in the query data model.
A covering index includes
all of the fields that a
query requires, so
Microsoft SQL Server can
only access the index
without even accessing
the table itself.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 50

Scenario Use Remarks

Reading summarized
data (filtered and
aggregated data)

Query Queries can take
advantage of Transact-
SQL aggregation
functions and other
capabilities to return
summarized data more
efficiently than reading
and iterating through the
sets to perform
aggregations.

Handling large quantities
of data in read-only
mode

Query When you read large
quantities of data, queries
provide better
performance than
records.

Mapping Queries to Transact-SQL

When Microsoft Dynamics NAV 2013 runs a query, it first translates it into a
Transact-SQL statement, and then runs that statement against the underlying
Microsoft SQL Server database. One benefit of queries is that they enable you to
model a dataset in a user-friendly way. Queries do not require knowledge of
Transact-SQL querying language, or expertise in Microsoft SQL Server.

However, if you are familiar with Transact-SQL, you may want to understand
exactly how the query features of Microsoft Dynamics NAV 2013 map to Transact-
SQL.

The following table summarizes the elements and properties of query objects, and
how they relate to Transact-SQL.

Transact-SQL Query Feature

SELECT Row of Type Column in the Query Designer
window

FROM Row of Type DataItem in the Query
Designer window

JOIN type DataItemLinkType and SQLJoinType query
properties

ON DataItemLink data item property

WHERE DataItemTableFilter data item property

ColumnFilter property of columns and filters
Row of Type Filter

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 51

Transact-SQL Query Feature

HAVING ColumnFilter property of columns and
filters, when aggregation is used

GROUP BY Automatically switched on for each row of
Type Column, when aggregation is used

ORDER BY OrderBy query property

TOP TopNumberOfRows query property

Analyzing Queries with SQL Server Profiler

You can use SQL Server Profiler that is included with Microsoft SQL Server to
analyze queries and how they translate to Transact-SQL.

The “Query 760, Trailing Sales Order Qry.” figure shows the data model of the
query 760, Trailing Sales Order Qry. in the Query Designer window.

FIGURE 12.23: QUERY 760, TRAILING SALES ORDER QRY.

When you run this query, Microsoft Dynamics NAV 2013 translates the query data
model into a Transact-SQL SELECT statement and executes it against the
underlying Microsoft SQL Server database.

You can use SQL Server Profiler to capture the Transact-SQL translation of the
query 760. Simplified, the Transact-SQL translation of this query looks as follows.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 52

Simplified Transact-SQL Translation of a Query Data Model

SELECT
 "Sales_Header"."Currency Code" AS "CurrencyCode",
 SUM("Sales_Line"."Amount") AS "Amount"
FROM
 "CRONUS International Ltd_$Sales Header" AS "Sales_Header"
JOIN
 "CRONUS International Ltd_$Sales Line" AS "Sales_Line"
 ON
 ("Sales_Line"."Document Type"="Sales_Header"."Document Type" AND
 "Sales_Line"."Document No_"="Sales_Header"."No_")
WHERE
 ("Sales_Header"."Document Type"= 1) AND
 ("Sales_Line"."Amount"<> 0)
GROUP BY
 "Sales_Header"."Currency Code"
ORDER BY
 "Sales_Header"."Currency Code" ASC

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 53

Module Review
Module Review and Takeaways

There are many situations in which iterative data access is incorrect. Microsoft
Dynamics NAV 2013 can tap into the powerful relational database management
engine of Microsoft SQL Server to select complex, multi-table sets of data in a fast
and efficient way.

The Query object of Microsoft Dynamics NAV 2013 enables you to define
relational data models that are translated into efficient SELECT statements.
Microsoft SQL Server can execute these statements as single data retrieval
operations. This guarantees optimal performance and minimal pressure on system
resources.

In Microsoft Dynamics NAV 2013, you can use queries to do any of the following:

• Define data sources for charts.

• Export data as CSV or XML files.

• Publish them as OData web services.

• Iterate through the result sets from the C/AL code. In this case queries
eliminate the need for multiple, nested data iteration loops.

Test Your Knowledge

Test your knowledge with the following questions.

1. Which of the following examples are valid use case scenarios for queries?

() Source for pages or data items on reports; data export through
XMLports; iterating through rows of data in C/AL.

() Table relations in tables, source for pages, source for Charts in the
RoleTailored client.

() Source for Charts in the RoleTailored client, source of OData web
services, iterating through rows of data in C/AL, and exporting result
sets as XML or text.

2. What property do you need to set and to what value, to specify that a row in
the parent data item is skipped if it contains no child rows?

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 54

3. How do you specify that the query should only return the year from a date
column?

4. Which is not the valid Totals method for a Decimal column in a query?

() Sum

() Count

() Average

() Min

() Exists

5. Which is a valid trigger in a query object?

() OnBeforeOpen

() OnBeforeOpenQuery

() OnOpen

() OnRun

() OnBeforeRun

6. You can programmatically filter query results by using SETRANGE and
SETFILTER functions.

() True

() False

7. Which function do you use to save query results into an XML file?

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 55

8. Which function do you use to save query results into a delimited text file?

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 56

Test Your Knowledge Solutions

Module Review and Takeaways

1. Which of the following examples are valid use case scenarios for queries?

() Source for pages or data items on reports; data export through
XMLports; iterating through rows of data in C/AL.

() Table relations in tables, source for pages, source for Charts in the
RoleTailored client.

(√) Source for Charts in the RoleTailored client, source of OData web
services, iterating through rows of data in C/AL, and exporting result
sets as XML or text.

2. What property do you need to set and to what value, to specify that a row in
the parent data item is skipped if it contains no child rows?

MODEL ANSWER:

Set DataItemLinkType to Exclude Row If No Match.

3. How do you specify that the query should only return the year from a date
column?

MODEL ANSWER:

Set the Method Type to Date, and Method to Year.

4. Which is not the valid Totals method for a Decimal column in a query?

() Sum

() Count

() Average

() Min

(√) Exists

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 12: Queries

12 - 57

5. Which is a valid trigger in a query object?

(√) OnBeforeOpen

() OnBeforeOpenQuery

() OnOpen

() OnRun

() OnBeforeRun

6. You can programmatically filter query results by using SETRANGE and
SETFILTER functions.

(√) True

() False

7. Which function do you use to save query results into an XML file?

MODEL ANSWER:

SAVEASXML

8. Which function do you use to save query results into a delimited text file?

MODEL ANSWER:

SAVEASCSV

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

12 - 58

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

	Module 12: Queries
	Module Overview
	Objectives

	Query Design
	Query Designer
	Selecting Data
	Defining Data Items
	Defining Columns

	Demonstration: Creating and Running a Simple Query
	Demonstration Steps

	Joining Data
	Demonstration: Joining Data Items
	Demonstration Steps

	Filtering Data
	DataItemTableFilter Property
	ColumnFilter Property
	Filter Rows
	OnBeforeOpen Trigger

	Demonstration: Defining Filters in a Query
	Demonstration Steps

	Aggregating Data
	Ordering Data
	Date Methods
	Demonstration: Aggregate and Order the Data
	Demonstration Steps

	Lab 12.1: Using a Query from a Chart
	Scenario
	Objectives
	Exercise 1: Creating a query
	Exercise Scenario
	Task 1: Create a new query object
	High Level Steps
	Detailed Steps

	Task 2: Add another data item
	High Level Steps
	Detailed Steps

	Task 3: Add columns to the query
	High Level Steps
	Detailed Steps

	Task 4: Set query properties
	High Level Steps
	Detailed Steps

	Task 5: Save the query
	High Level Steps
	Detailed Steps

	Results
	Exercise 2: Creating a chart
	Exercise Scenario
	Task 1: Create a new chart setup
	High Level Steps
	Detailed Steps

	Task 2: Configure the Chart Setup Card
	High Level Steps
	Detailed Steps

	Results
	Exercise 3: Adding the chart to the Role Center.
	Exercise Scenario
	Task 1: Customize the Role Center
	High Level Steps
	Detailed Steps

	Task 2: Preview the chart
	High Level Steps
	Detailed Steps

	Accessing Queries from C/AL
	Running Queries
	OPEN
	READ
	CLOSE
	Opening, iterating through, and closing a query

	Column Access
	Accessing a column of a query from C/AL

	Filtering Queries
	Using SETFILTER and SETRANGE on a query

	TOPNUMBEROFROWS
	Calling TOPNUMBEROFROWS

	Saving Result Sets
	Using TOPNUMBEROFROWS and SAVEASXML functions
	Saving to CSV
	Saving to XML

	Lab 12.2: Using Queries in C/AL
	Scenario
	Objectives
	Exercise 1: Create a codeunit which uses a query
	Exercise Scenario
	Task 1: Create a codeunit
	High Level Steps
	Detailed Steps

	Task 2: Declare variables
	High Level Steps
	Detailed Steps

	Task 3: Iterate through the query
	High Level Steps
	Detailed Steps

	Task 4: Apply the business rule
	High Level Steps
	Detailed Steps

	Task 5: Test the codeunit
	High Level Steps
	Detailed Steps

	Advanced Query Concepts
	Queries and Records
	Mapping Queries to Transact-SQL
	Analyzing Queries with SQL Server Profiler
	Simplified Transact-SQL Translation of a Query Data Model

	Module Review
	Module Review and Takeaways
	Test Your Knowledge

	Test Your Knowledge Solutions
	Module Review and Takeaways

