
11 - 1

MODULE 11: MICROSOFT .NET FRAMEWORK
INTEROPERABILITY

Module Overview
The Microsoft .NET Framework is an integral component of Microsoft Windows
operating systems, that supports building and running the next generation of
applications. It consists of Common Language Runtime which manages memory,
execution, code safety, just-in-time compilation, additional system services, and a
comprehensive class library that provides access to a wide range of system
functionality. This includes operating system access, security, threading, text and
XML manipulation, globalization, data access services, communication services,
and more.

The .NET Framework is the main software development framework for Windows.
Most Microsoft and third-party applications are developed in addition to .NET
Framework. Microsoft Dynamics NAV 2013 is fully built in the .NET Framework
and is a native .NET Framework application.

Microsoft Dynamics NAV 2013 and C/AL programming language include a set of
features which allow for interoperability of C/AL code with the .NET Framework
classes. You can take advantage of the .NET Framework interoperability so that
Microsoft Dynamics NAV objects can interact with .NET Framework objects. In
Microsoft Dynamics NAV objects, you can reference .NET Framework classes and
call their members directly from C/AL code. The .NET Framework interoperability
lets you use .NET Framework class library or third-party assemblies from the
global assembly cache. You also can use your own custom assemblies that are
deployed in the server or client executable directory. Use the .NET Framework
interoperability to extend your solution beyond the boundaries of C/AL. Using
.NET Framework interoperability features, your solution can perform any of the
following functions:

• Communicate with third-party applications through web services.

• Integrate with Microsoft Office products.

• Manipulate text data with more flexibility than C/AL.

• Extend the functionality of the Microsoft Dynamics NAV 2013 client
for Windows.

 Note: Even though client-side .NET Framework interoperability is not
supported in Microsoft Dynamics NAV Portal Framework for Microsoft SharePoint
2010, server-side .NET Framework interoperability is fully supported without regard
to the environment and display target.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 2

Objectives

The objectives are:

• Explain the .NET Interoperability features.

• Describe the concept of constructors.

• Communicate between client-side and server-side objects.

• Describe how to respond to events that are raised by .NET objects.

• Examine mapping between C/AL and .NET data types.

• Review the most important C/AL functions for managing .NET objects.

• Use arrays, collections, and enumerations.

• Explain how to stream data between C/AL and .NET objects.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 3

The DotNet Data Type
The .NET Framework interoperability is achieved through the DotNet C/AL data
type. By declaring a variable of DotNet data type, and subtyping it to a specific
.NET Framework class, you can access all functionality of the referenced class. This
is available to developers within the Visual Studio programming environment. The
DotNet data type combines the power of the .NET Framework with the simplicity
of coding in C/AL programming language. You can use the familiar syntax and
development environment, while having full access to the .NET Framework.

The .NET Framework contains assemblies that can be either a part of the Global
Assembly Cache (GAC) or can be custom assemblies that are deployed as a part of
the application which is using them. In Microsoft Dynamics NAV 2013 you can use
assemblies both from the GAC, and from the executable folder of Microsoft
Dynamics NAV 2013 Service Tier or RoleTailored client.

The DotNet variable lets you do the following tasks:

• Access a specific .NET Framework class and its members.

• Respond to events that are raised by the referenced .NET Framework
class.

• Target the Microsoft Dynamics NAV 2013 Server or the Microsoft
Dynamics NAV 2013 client for Windows.

Declaring A DotNet Variable

To declare a DotNet variable, open the C/AL Globals or C/AL Locals window,
enter the variable name, and select DotNet in the Type field. In the Subtype
field, click the AssistEdit(…) button to open the .NET Type List window.

The .NET Type List window enables you to subtype a DotNet variable to a
specific .NET Framework assembly and a specific class within a selected assembly.
When declaring a DotNet variable, you first must select an assembly, and then a
class within the selected assembly.

To select an assembly, look up the field Assembly to open the Assembly List
window. This window shows the list of all available assemblies. Assemblies are
grouped into the following two tabs.

Tab Description

Dynamics NAV Assemblies that are located in the local Add-ins folder of
the Microsoft Dynamics NAV 2013 RoleTailored client
installation are listed in the Dynamics NAV tab.

.NET Assemblies that are installed in the GAC are listed in the
.NET tab.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 4

 Note: The Dynamics NAV tab of the .NET Type List window shows only the
assemblies that are present in the Add-ins folder of the RoleTailored client. If you
want the declared variable to target the Microsoft Dynamics NAV 2013 Server, then
you must make sure that the assembly that you referenced is also installed in the
Add-ins folder of the Service tier.

After you select the assembly, click OK to return to the .NET Type List window,
where you complete the declaration of the DotNet variable by selecting the
required class from the Type list.

 Note: NET Framework member names in C/AL code are case-sensitive. If you
use the incorrect case when you call a member, then you receive an error when you
compile the object. This behavior differs from other C/AL variables where you can
mix cases and still compile the object. For other C/AL variables, the case is corrected
automatically the next time that you open the object.

Deployment Options

To be accessed by Microsoft Dynamics NAV 2013, the .NET assemblies can be
deployed either in the GAC or in the installation folder of either Microsoft
Dynamics NAV 2013 Server or the RoleTailored client.

Global Assembly Cache (GAC)

GAC is a machine-wide, central repository of .NET assemblies. This repository is
virtual, and assemblies can physically reside anywhere in the file system. Each
assembly in the GAC is tagged with its strong name, version, and public key token.
This makes it easy to reference a specific version of the assembly, and guarantees
that compatibility of existing applications is never compromised after a new
version of an assembly is installed.

After you install the .NET Framework, the GAC contains the Framework Class
Library that Microsoft provides. However, you can deploy your own custom-built
assemblies into the GAC and make them available to other applications. Many
third-party products deploy their assemblies into the GAC.

An assembly that is deployed into the GAC can be consumed by any .NET
Framework application. This includes being used as a DotNet variable in Microsoft
Dynamics NAV 2013.

After an assembly is deployed into the GAC, it is available in the .NET tab of the
Assembly List window.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 5

 Note: To learn more about the GAC and how to deploy assemblies into it,
refer to the Developer and IT Pro Help documentation and to MSDN
documentation online.

Local Application Folder

As an alternative to the GAC, you can deploy the assemblies in the Add-ins
subfolder of the local application folder of Microsoft Dynamics NAV 2013 Server,
the RoleTailored client, or both. This depends on whether DotNet variables that
reference this assembly are targeting the server or the client.

The exact path of the Add-ins folder depends on the options that you chose
during installation. However, the default path for the RoleTailored client is
C:\Program Files (x86)\Microsoft Dynamics NAV\70\RoleTailored Client\Add-ins.
The default path for the Server is C:\Program Files\Microsoft Dynamics
NAV\70\Service\Add-ins.

 Best Practice: For both the client and the server, put the assemblies into the
subfolders of the Add-ins folder. This organizes multiple versions of the same
assembly, and groups dependent assemblies.

Resolution Priority

When referencing classes that do not reside within the application, .NET
applications first try to resolve the class by looking for it in the GAC. If the
application you cannot find it in that location, then the application searches the
local folder. The same is true of Microsoft Dynamics NAV 2013. Therefore, when
C/AL code tries to create an instance of a .NET object, it first tries to load the
assembly from the GAC. If it is not found there, it searches for the assembly in the
Add-ins folder or its subfolders.

 Best Practice: To guarantee maximum backward and forward compatibility
of your custom C/AL code, it is best practice to deploy your assemblies into the
GAC. This ensures that your C/AL code, which targets a specific version of a .NET
assembly, does not stop working when a newer version of the same assembly is
deployed.

Client-side and Server-side Execution

When declaring a DotNet variable, you can decide whether it targets the
Microsoft Dynamics NAV 2013 client for Windows (client-side object) or Microsoft
Dynamics NAV 2013 Server (server-side object). By default, all DotNet variables
target the Microsoft Dynamics NAV 2013 Server and execute on the server-side.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 6

To specify that a DotNet variable should target the Microsoft Dynamics NAV 2013
client for Windows, set the DotNet variable RunOnClient property to Yes.

 Note: When a DotNet variable targets a specific tier, the instance of the
referenced class is created in the specified tier. Any calls to its members execute
under that tier. Make sure that the assembly that you reference is available in either
the GAC or the local application folder on the physical server where it runs.

Events

An event is a message that is sent by an object to signal the occurrence of an
action. The action might be caused by user interaction, such as a mouse click, or it
might be triggered by some other program logic. The object that raises the event
is called the event publisher. The object that captures the event and responds to it
is called the event subscriber.

If a DotNet variable references a class that publishes events, you can subscribe to
those events in C/AL code by setting the variable’s WithEvents property to Yes.
When you subscribe to events of a DotNet variable, a blank trigger is created in
C/AL code for each event.

The DotNet variable is always subscribed to all events that the publisher exposes.
You can define the event by adding code to the event trigger that is generated by
C/SIDE. When the .NET object raises the event, the corresponding trigger in C/AL
code is invoked and its code runs.

 Note: Events are only supported on global variables.

Client-side and Server-side Events

Events always run on the tier that the DotNet variable targets. When a DotNet
variable targets the client, the events execute on the client (client-side events).
When the variable targets the Microsoft Dynamics NAV 2013 Server, the events
execute on the server (server-side events).

Client-side events are only supported in page objects; server-side events are
supported in all object types that support C/AL code.

Synchronous and Asynchronous Events

Events that are published by .NET Framework objects can be classified as
synchronous or asynchronous.

Synchronous events are raised immediately when something occurs in the running
application code in the main execution thread of the publisher. The execution of
the code in the publisher waits until the event code in the subscriber is completed.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 7

Asynchronous events are raised in a separate thread of the publisher. The
execution on the main thread of the publisher immediately continues. This means
that time may pass after something occurs, before the subscriber is notified of the
event. Another effect is that the publisher may go out of scope by the time that
the subscriber finishes the execution of the event. An example of an asynchronous
event is the timer event of the System.Timers.Timer class.

When asynchronous events are raised in a DotNet variable, they are added to the
event queue of the .NET Framework, and first processed when the connection
between the client and the Microsoft Dynamics NAV Server is idle. A connection is
idle when no Microsoft Dynamics NAV objects are communicating over the
connection. If there is a long process that is running over the connection, you
might experience a delay in the running of event triggers.

To determine whether an event of a class that you subscribe to is synchronous or
asynchronous, view the documentation of the class. When you create your own
.NET classes, all events are synchronous unless you specifically design an
asynchronous event.

 Best Practice: When subscribing to asynchronous events of a DotNet
variable, declare such variables in a single-instance codeunit. Those codeunits
remain instantiated until you close the client or a company. DotNet variables
declared in them are still active after asynchronous events complete.

Constructors

A constructor is a method that creates an instance of an object and prepares it for
use. This is usually done by initializing its members and properties and allocating
necessary resources. Constructors can accept parameters, just as any other
method.

 Note: In the .NET Framework Interoperability in C/AL, a constructor always
has the same name as the class that the DotNet variable references.

Classes usually have a constructor without parameters. This is known as the default
constructor. A class may have multiple constructors. These are known as
overloaded constructors. They differ from the default constructor because they
accept different numbers or types of parameters.

 Note: It is not important if a default constructor or an overloaded constructor
is called. All constructors create an instance of a class. The only difference is in the
initialization behavior. Constructors with more parameters usually set more default
properties.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 8

The “Constructor List for a DotNet Variable in the C/AL Symbol Menu” figure
shows the list of constructors that are available for a DotNet variable referencing
System. Collections.Generic.List<T> class:

FIGURE 11.1: CONSTRUCTOR LIST FOR A DOTNET VARIABLE IN THE C/AL
SYMBOL MENU

Static Classes and Members

In the .NET Framework, classes can be static. Static classes cannot be instantiated,
and do not have a constructor. A DotNet variable that references a static class can
be accessed immediately after it is declared. All other DotNet variables first must
be instantiated by using a constructor.

The type information for a static class is loaded by the .NET Framework common
language runtime (CLR) when the program that references the class is loaded. The
program cannot specify exactly when the class is loaded. However, the class is
guaranteed to be loaded and to have its fields initialized before the class is
referenced for the first time in your program. A static class remains in memory for
the lifetime of the application domain in which the program resides. All threads of
the same application always have access to the same instance of the class.

Nonstatic classes can still have static members. To access static members the class
does not have to be instantiated by using a constructor. You can access static
members of a class whether you have called the constructor before or not.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 9

 Note: In Microsoft Dynamics NAV 2013, a static class or object is loaded once
per Microsoft Dynamics NAV 2013 Server instance. The class or object is shared
between all clients that are connected to the server instance. The data that is
maintained by the static class or object is visible by all clients that use the type. You
should consider this in your .NET Framework interoperability design to help avoid
disclosing private information.

Demonstration: Declaring a DotNet Variable and
Subscribing to Events

The following demonstration shows how to declare a DotNet variable and
subscribe to its events. A DotNet variable is an instance of the
System.IO.FileSystemWatcher class. It is configured to monitor a folder in the file
system, and log any creation or deletion events for files.

Demonstration Steps

1. Create a table to keep track of the file system changes, and save it as
table 90011, File System Log.
a. Click Tools > Object Designer.
b. In Object Designer, click Table.
c. Click New.
d. In the Table Designer, define the following fields.

Field No. Field Name Data Type Length

1 Event Time DateTime

2 Event Name Text 250

3 File Name Text 250

e. Click File > Save.
f. In the Save As dialog window, in the ID field, enter “90011”.
g. In the Name field, enter “File System Log”.

h. Make sure that Compiled is selected, and then click OK.
i. Close the Table Designer.

2. Create a new list page for the File System Log table.

a. In Object Designer, click Page.
b. Click New.
c. In the New Page window, in the Table field, enter “File System

Log”.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 10

d. Select the Create a page using a wizard option, and select the

List type.
e. Click OK to start the List Page Wizard.
f. Add all fields from the Available Fields list to the Field Order

list.

g. Click Finish to close the List Page Wizard, and enter Page
Designer for the new page.

3. Add a new variable named FileSystemLog for the File System Log
table. Add another variable named FileWatcher, of type DotNet and
subtype System.IO.FileSystemWatcher from the System assembly.
a. Click View > C/AL Globals.
b. In the Name field, enter “FileSystemLog”.

c. In the DataType field, select Record, and in the Subtype field,
enter “File System Log”.

d. On the new row, in the Name field, enter “FileWatcher”, in the
DataType field, select DotNet.

e. In the Subtype field, click AssistEdit to open the .NET Type List
window.

f. Look up the Assembly field to open the Assembly List window.

g. In the Assembly List window, select the .NET tab, and then
select System.

h. Click OK to accept the selection and close the Assembly List
window.

i. In the .NET Type List window, select the
System.IO.FileSystemWatcher class, and then click OK.

4. Set the property on the FileWatcher variable to enable events.

a. Select the FileWatcher variable, and then click View > Properties.
b. In FileWatcher – Properties window, set WithEvents to Yes.
c. Close the FileWatcher – Properties window.
d. Close the C/AL Globals window.

5. Create a function that accepts two parameters: one for the file path,

and another for the event name. Then log the file system event in the
File System Log table.
a. Click the Functions tab.
b. Create a new function, and name it LogEvent.
c. Select the LogEvent function and then click Locals.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 11

d. Define the following parameters:

Var Name DataType Length

No FileName Text 250

No EventName Text 250

e. Close the C/AL Locals window.

f. Right-click the LogEvent function, and then click Go To
Definition to open the C/AL Editor window at the LogEvent
function trigger definition.

g. In the LogEvent function trigger, enter the following code.

LogEvent Function Trigger

FileSystemLog.INIT;

FileSystemLog."Event Time" := CREATEDATETIME(TODAY,TIME);

FileSystemLog."Event Name" := EventName;

FileSystemLog."File Name" := FileName;

FileSystemLog.INSERT;

6. Add the code to the OnOpenPage trigger that constructs an instance
of the FileSystemWatcher class, and sets it to monitor the C:\ folder.
a. In the OnOpenPage trigger, enter the following code:

OnOpenPage Code

FileWatcher := FileWatcher.FileSystemWatcher;

FileWatcher.Path := 'C:\';

FileWatcher.NotifyFilter := 317;

FileWatcher.EnableRaisingEvents := TRUE;

 Note: The NotifyFilter property value of 317 corresponds to the C# value of
NotifyFilters.FileName | NotifyFilters.Attributes | NotifyFilters.LastAccess
|NotifyFilters.LastWrite | NotifyFilters.Security | NotifyFilters.Size.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 12

7. Add the code to appropriate event triggers to log the file system

event for creation and deletion events.
a. In the bodies of both the FileWatcher::Created and

FileWatcher::Deleted event triggers, enter the following code:

FileWatcher::Created and FileWatcher::Deleted Event Trigger Code

LogEvent(e.FullPath,FORMAT(e.ChangeType));

8. Save the page as 90012, File System Watcher, and run it.
a. Click File > Save.

b. In the Save window, in the ID field, enter “90012”.
c. In the Name field enter “File System Watcher”.
d. Click OK.
e. Close Page Designer.
f. In Object Designer, select page 90012, File System Watcher.
g. Click Run.

9. Create and delete several files in the C:\ folder, and then refresh the

page to view the changes.
a. On the Start menu, click Computer.
b. In Windows Explorer, double-click Local Disk (C:).

c. Right-click in the empty area in the Windows Explorer window.
d. In the popup menu, click New > Text Document.
e. Repeat Step d.

 Note: This creates two new text documents, named New Text Document and
New Text Document (2).

f. Select the New Text Document and New Text Document (2) text
files, and then delete them.

g. In the File System Watcher page, on the Actions tab in the
ribbon, click Refresh.

The File System Watcher shows two creation and two deletion events, as shown in
the “File System Watcher Page” figure.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 13

FIGURE 11.2: FILE SYSTEM WATCHER PAGE

Comparing Values

.NET Framework interoperability does not support direct use of operators to
compare two DotNet variables.

The following code is not allowed.

Invalid comparison of DotNet variables

IF DotNet1 = DotNet2 THEN

 DoSomething;

If you want to compare two DotNet variables, use the Equals function on the
DotNet.

The following example shows how to compare two DotNet variables.

Valid comparison of DotNet variables

IF DotNet1.Equals(DotNet2) THEN

 DoSomething;

You can perform comparisons by using .NET Framework methods and properties
that return compatible C/AL types because these objects are implicitly converted
to C/AL types before the comparison occurs.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 14

The following example shows valid comparisons with DotNet data types and their
members.

Comparison Examples

// DotNetList1 and DotNetList2 are of System.Collections.Generic.List<T> type

DotNetList1 := DotNetList1.List;

WHILE DotNetList1.Count < 5 DO

 DotNetList1.Add(RANDOM(100));

DotNetList2 := DotNetList2.List;

WHILE DotNetList2.Count < DotNetList1.Count DO

 DotNetList2.Add(RANDOM(100));

Data Type Mapping and Assignment
The .NET Framework data types are not the same as C/AL data types. When
interoperating between C/AL and the .NET Framework, certain data mapping,
conversion, and assignment rules are applied by both the C/AL compiler and
Microsoft Dynamics NAV 2013 runtime.

In C/AL, some .NET Framework data types, such as Booleans, Integers, and
Decimals are automatically converted to C/AL types. Because the types are
converted, the .NET Framework versions of these types are not directly supported
in C/AL.

For example, instead of using a .NET Framework Integer data type inside your
C/AL code, you should use a C/AL Integer data type. When the C/AL Integer is
passed as a parameter to a DotNet variable method, then the C/AL Integer is
converted automatically to a .NET Framework Integer. When a DotNet variable
method returns a .NET integer, it is converted automatically to C/AL Integer.

When assigning values between C/AL data types and the .NET Framework data
types, there are data types which you can assign in either direction in any
circumstances. On the other hand, there are C/AL and the .NET Framework data
types which can only be assigned in one direction. Assigning these data types in
another direction, may cause errors or data loss.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 15

Bi-directional Mapping

A right-to-left map exists when data types between C/AL and the .NET Framework
fully match and can be assigned between C/AL and the .NET Framework in both
directions without any data loss or risk of a runtime error. Any data types that can
be mapped right-to-left can be used easily in C/AL code for all types of
operations. For example, a System.Bool always can be assigned between C/AL and
the .NET Framework.

The following data types always can be assigned in both directions between C/AL
and the .NET Framework without any errors or data loss.

.NET Framework Data Type C/AL Data Type

System.Byte
(0..255)

Char
(0..255)

System.Int32
(-2,147,483,648..2,147,483,647)

Integer
(-2,147,483,648..2,147,483,647)

System.Int64

(-9,223,372,036,854,775,808
..9,223,372,036,854,775,807)

BigInteger

(-9,223,372,036,854,775,808
..9,223,372,036,854,775,807)

System.Bool

(TRUE, FALSE)

Boolean

(TRUE, FALSE)

System.Guid
(128 bit number)

GUID
(128 bit number)

System.Int32
(-2,147,483,648..2,147,483,647)

Option
(-2,147,483,648..2,147,483,647)

 Note: When assigning to and from the
C/AL option variable, the value is mapped to
System.Int32 data type.

System.IO.Stream InStream
OutStream

 Note: Even though InStream and
OutStream are freely assignable to and from
System.IO.Stream, specific situations require
specialized stream types, such as
System.IO.MemoryStream.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 16

Limited Mapping

Some C/AL data types and the .NET Framework data types do not fully match, and
there are circumstances where assignment always works in one direction. However
assignment in the opposite direction may result in a loss of data or even a run-
time error. For example, you can always assign System.Enum to Integer, but
assigning Integer to System.Enum may result in a run-time error. Especially
around numeric types, .NET Framework provides more flexibility around how the
data is stored. You must take additional precautionary steps when assigning data
between such types where limitations in the mapping exist.

You can assign the following data types in both directions between C/AL and the
.NET Framework. However, some data loss or errors may occur, depending on
actual values.

.NET Framework Data Type C/AL Data Type

System.Single
(±3.402823e38)
System.Double

(±1.79769313486232e308)
System.Decimal
(±79,228,162,514,264,337,593,543,9
50,335)

Decimal
(±999,999,999,999,999.99..999,999,999,99
9,999.99)

 Note: Assigning between
System.Single, System.Double or
System.Decimal to Decimal is supported
in both directions. When assigning from
C/AL to the .NET Framework, some
precision may be lost. When assigning
from .NET to C/AL, precision may be lost,
or an error can occur if the .NET
Framework variable value is out of
bounds of the C/AL variable.

System.Char

(0..65535)

 Note: Unicode character that
is represented internally as a 16-bit
unsigned integer.

Integer

(±2,147,483,647)

 Note: Assigning from .NET
Framework to C/AL is always possible.
Assigning from C/AL to .NET Framework
results in errors if the value that is passed
is out of bounds of System.Char.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 17

.NET Framework Data Type C/AL Data Type

System.SByte
(-128..127)
System.Int16

(-32768..32767)
System.UInt16
(0..65335)

System.UInt32
(0.. 4,294,967,295)
System.UInt64
(0..18,446,744,073,709,551,615)

Integer
(-2,147,483,648..2,147,483,647)
BigInteger

(-9,223,372,036,854,775,808
..9,223,372,036,854,775,807)

 Note: The .NET Framework integer
types of various data lengths (8, 16, 32, or
64 bytes) and various sign types (signed
or unsigned) can be assigned to and from
C/AL Integer and BigInteger types, as
long as the value that is assigned from is
not out of bounds of the variable that it is
being assigned to. If the value is out of
bounds, a run-time error occurs.

System.String Text
(up to 2 gigabytes)
BigText

(up to 2 gigabytes)
Code
(0 to 1024 bytes.)

 Note: A Code variable always can
be assigned to System.String. A
System.String variable can be assigned
only to Code if it contains less than 1024
characters.

When assigning System.String to Code, it
turns to uppercase. When it is assigned
from Code to System.String, uppercase is
retained.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 18

.NET Framework Data Type C/AL Data Type

System.DateTime
1 January year 1 .. 31 December
9999

DateTime
3 January year 1 .. 31 December 9999

 Note: Assigning dates between
.NET Framework and C/AL result in
possible data loss when dates earlier than
January 3, year 1 are assigned to C/AL
datetime. In addition, .NET Framework
does not have a concept of 0D. This is
represented as January 1, year 1 in the
.NET Framework.

DateTime

3 January year 1 .. 31 December 9999
Time
(00:00:00.000 .. 23:59:59.999)

 Note: Because the .NET Framework
only has DateTime, C/AL Date, and Time,
variable values can be passed on to .NET
Framework only as DateTime. Use
CREATEDATETIME(Date,0T) when passing
the Date variable, or
CREATEDATETIME(0D,Time) when
passing the Time variable.

System.TimeSpan
(resolution is 100 nanoseconds)

Duration
(resolution is 1 millisecond)

 Note: Duration is internally
represented as a 64-bit unsigned integer.
Because of resolution differences, there
may be some data loss when assigning
from .NET Framework to C/AL.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 19

.NET Framework Data Type C/AL Data Type

System.Enum Integer
(±2,147,483,647)

 Note: System.Enum resembles
Option because it stores a list of possible
values. Although Option always is
represented internally as an Integer in
C/AL, in the .NET Framework,
System.Enum can be of any integer data
type. Additionally, System.Enum allows
you to explicitly assign an integer value to
a specific enum value. This makes it likely
to result in a run-time error if you assign
an arbitrary Integer value to
System.Enum.

Mapping of System.String and System.DateTime

Most of the .NET Framework types are automatically converted to C/AL data types
when the DotNet variable is instantiated, such as when you use it as a parameter
and a return value of the .NET Framework class methods. Therefore, the DotNet
variables cannot be used if they reference those types explicitly. For example, if
you declare a DotNet variable of type System.Int32, you cannot use that variable
in code to assign values to or from it.

Exceptions to this rule are System.String and System.DateTime types that are not
converted automatically to C/AL data types, and can be explicitly referenced by
DotNet variables. For example, if you declare a DotNetVariable of type
System.String, you can use it in code to assign values to or from it, and you can
call all System.String methods or access its properties. However, if a .NET
Framework method returns a value of type System.String or System.DateTime,
they are implicitly converted to C/AL Text or DateTime types.

 Note: Even though you can use System.String and System.DateTime to assign
values to and from C/AL variables or constants, you still cannot use these variables
in comparison operations. Everything that applies to comparing DotNet variables,
applies to comparing DotNet variables with C/AL variables. You must still use
specific .NET Framework comparison methods, or assign the values to C/AL
variables first, and then compare the C/AL variables.

The following code example shows valid and invalid data type assignments and
comparisons.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 20

Data Type mapping for System.String and System.DateTime

// DotNetString is DotNet(System.String)

// CALText is Text[1024]

DotNetString := 'This is a System.String';

DotNetString := DotNetString.ToUpper;

CALText := DotNetString;

// Invalid comparison

IF (CALText = DotNetString) THEN;

// Valid comparison

IF DotNetString.Equals(CALText) THEN;

// Valid comparison

// ToString returns a System.String, but C/AL

// compiler implicitly converts it to Text

IF CALText = DotNetString.ToString THEN;

// DotNetDateTime is DotNet(System.DateTime)

// CALDateTime is DateTime

DotNetDateTime := CREATEDATETIME(TODAY,0T);

DotNetDateTime := DotNetDateTime.AddDays(1);

CALDateTime := DotNetDateTime;

// Invalid comparison

IF CALDateTime = DotNetDateTime THEN;

// Valid comparison

IF DotNetDateTime.Equals(CALDateTime) THEN;

// Valid comparison

// AddDays returns a System.DateTime, but C/AL

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 21

// compiler implicitly converts it to DateTime

IF CALDateTime = DotNetDateTime.AddDays(0) THEN;

Assign Instance References

DotNet variables are always of reference type, and never of value type. Assigning
a DotNet variable to another DotNet variable creates another reference to the
same object in memory. Changing any properties or values in the first variable
results in applying the same change to the second variable.

The following code example shows the assignment of one DotNet variable to
another.

Assigning DotNet variables

// List1 and List2 are System.Collections.Generic.List<T>

// From the mscorlib assembly

List1 := List1.List;

List2 := List1;

List1.Add('First');

List2.Add('Second');

List2 := List2.List;

List2.Add('Third');

MESSAGE('List1.Count = %1',List1.Count);

MESSAGE('List2.Count = %1',List2.Count);

In the code that was mentioned earlier, the two DotNet variables are of the type
System.Collections.Generic.List<T>. The first list is instantiated, and assigned to
the second variable. Both variables reference the same list object in memory. An
element then is added to the first list, and an element is added to the second list.
However, because both variables now point to the same list, there are two
elements in the list now. Regardless of which variable (List1 or List2) you use to
access the object, you always access the same instance of
System.Collections.Generic.List<T>. The List2 variable then is instantiated, at which
stage it loses the reference to the first list, and receives a new reference to a new
instance. When you add an element to that list, nothing is added to List1, because
List1 and List2 now point to two separate objects. You can easily verify that by
showing the Count property of both variables.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 22

The following “References and Instances Diagram” shows how objects are
instantiated, and how variables act as references only to other objects.

FIGURE 11.3: REFERENCES AND INSTANCES DIAGRAM

Assignment Between DotNet Subtypes

The .NET Framework is a strongly typed framework where each variable must be
of a specific type. The type must be known at the time of declaration of the
variable.

You can assign one DotNet variable to another even if they are of different .NET
Framework types. This can happen only if the .NET Framework type of the variable
being assigned from is compatible with the .NET Framework type of the variable
being assigned to. Typically, the type compatibility in the .NET Framework is
achieved through an object programming concept called inheritance. In the .NET
Framework, types can inherit other types. There are no limits to the levels of
inheritance. Any descendant type always inherits all its ancestor types.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 23

For the purposes of assignment, ancestors are always compatible with their
descendants, but descendants are not always fully compatible with their ancestors.
Types are incompatible across inheritance trees. Variables can only be assigned if
both types are on the same inheritance branch.

When assigning between types, you can always assign a descendant-type variable
to ancestor-type variable. However, assigning an ancestor-type variable to a
descendant-type variable is not considered safe. If the code accesses descendant
type members on a reference of ancestor type, the error is detected only during
runtime.

The following example shows how ancestor and descendant types can be
mutually assigned, and how assigning ancestors to descendants is not safe.

Assignment between types

// All types are from System.Xml.Linq namespace

XDocument := XDocument.Parse('<xml attribute="first" />');

XNode := XDocument.Root.FirstAttribute;

MESSAGE('%1',XNode.ToString);

XElement := XNode;

MESSAGE('%1',XElement.Document.ToString);

MESSAGE('%1',XElement.HasElements);

In the code that was mentioned earlier, XNode is the ancestor of XAttribute.
Therefore, assignment to XNode succeeds. However, the later assignment of the
same XNode to a variable of type XElement is not safe, because the actual type is
XAttribute, which is not fully compatible with XElement. The first subsequent
MESSAGE call succeeds, because Document property is a member of XNode
ancestor. Therefore, it is visible in both XElement and XAttribute. However, the
second MESSAGE call fails, because HasElements property is a member of
XElement (the declared type), but is not a member of XAttribute (the actual type).

System.Object

All types in the .NET Framework inherit from System.Object. System.Object is a
common ancestor of all .NET Framework types. Therefore, assignment of any .NET
Framework type to a variable of type System.Object is considered safe.

As in any other .NET Framework programming language, in the .NET Framework
interoperability, you can assign any DotNet variable to a DotNet variable of type

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 24

System.Object. In the assignment operations, you cannot assign any native C/AL
data types to a DotNet variable of type System.Object. However, you can pass the
variables of simple C/AL data and several complex data types as parameters to
any .NET Framework object methods to replace a System.Object parameter.

Local and Global Scope

A local DotNet variable is disposed of by default when it goes out of scope. This
happens after the execution of the function where it is declared finishes. The
disposal does not occur immediately, but is taken care of by the Garbage Collector
component of the .NET Framework. The Garbage Collector cleans up any unused
resources that are left over by objects that either do not have any active variables
referencing them, or that are explicitly disposed of through the IDisposable
interface.

All DotNet variables implement the IDisposable interface. Microsoft Dynamics
NAV 2013 runtime call their Dispose method as soon as they go out of scope. If
you assign a local DotNet variable to a global one, when the local variable is
disposed, the global one references a potentially non-existing object.

If you do not want your local DotNet variables to be disposed when they go out
of scope, set the SuppressDispose property to Yes on each local DotNet variable
that you do not want disposed. This lets you use the local variable outside the
scope where it was instantiated.

 Note: You typically set the SuppressDispose on a variable that refers to a type
of system resource that has a special disposal pattern.

Serializing Data Between Client And Server

When you write C/AL code, you may assign a variable with RunOnClient set to Yes
(a client-side object), to a variable with RunOnClient set to No (a server-side
object). The opposite is also true. This is possible, but only if the object being
referenced supports serialization.

In .NET Framework, serialization converts an object into a format that you can use
to store the current state of the object, so that you can restore the object later
together with the identical state. You typically use serialization when you transmit
an object over a network connection, or when you store it in a database.

Microsoft Dynamics NAV 2013 .NET Framework Interoperability uses serialization
for communication between client-side .NET Framework objects and server-side
.NET Framework objects. The serialization occurs under the following conditions:

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 25

• When a server-side object variable is assigned to a variable that is
assigned as client-side. The opposite is also true.

• When a server-side object variable is passed as a parameter in a
method call from the server to a client-side object. The opposite is
also true.

Serialization requires that the .NET Framework types that are referenced by the
DotNet variables are serializable. Many types in the Microsoft .NET Framework
class library are already serializable. If you are using a .NET Framework type that
cannot be serialized, then you must change the type to make it serializable. You
can do so by applying the System.SerializableAttribute of type attribute, or by
implementing the System.Runtime.Serialization.ISerializable interface.

 Note: If you want to learn more about serialization in the .NET Framework
objects, and how to make your custom .NET Framework objects serializable, refer to
the Developer and IT Pro Help, or to the MSDN documentation online.

.NET Framework interoperability C/AL Functions
Several .NET Framework concepts are completely foreign to C/AL. For example,
there is no concept of null in C/AL. In the .NET Framework null is an important
concept that is frequently used and depended upon.

In order to provide access to such concepts, C/AL includes several system
functions that help interoperability with the .NET Framework. These system
functions make it simpler to write code in C/AL, which basically targets the .NET
Framework exclusively.

null and ISNULL function

In the .NET Framework, most types are reference types. This means that the
variable does not hold the actual value, but holds the reference to an object
instead. There are very few value types in the .NET Framework. They include
Boolean, numeric, and DateTime types. These are all built-in types. Examples of
reference types are classes, arrays, and strings. A programmer cannot declare a
new value type.

In C# (a .NET Framework programming language), null is a keyword that
represents a null reference. This means a reference that does not refer to any
object. When a reference-type variable is declared, null is its default value.

 Note: If you are more familiar with Visual Basic .NET, then you should be
aware that Visual Basic uses the Nothing keyword instead of the null keyword.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 26

If you try to access a DotNet variable that holds the null value, which is typically
before it was instantiated, a run-time error is thrown. To avoid that situation,
check whether the variable holds no reference by calling the ISNULL function. This
function takes a DotNet variable as a parameter, and returns TRUE if the variable
has a null value, or FALSE if it references a valid object.

The following code example shows how to use the ISNULL function.

ISNULL function

AddToList(List : DotNet "System.Collections.Generic.List`1";Value : Text[1024])

IF ISNULL(List) THEN

 List := List.List;

List.Add(Value);

System.Type .NET Framework Type

Reflection is the capability of classes to gain insight into their own structure or the
structure of other classes. Reflection is an important concept in the .NET
Framework. At the core of that concept is the data type, which is represented by
the System.Type class. System.Type class represents type declarations. These
include the following types:

• Class types

• Interface types

• Array types

• Value types

• Enumeration types

• Type parameters

• Generic type definitions

In addition to reflection, type information is also very important because .NET
Framework is a strongly typed framework. Each variable must be of a specific type,
and the type must be known at the time of declaration of the variable.

GETDOTNETTYPE

The GETDOTNETTYPE C/AL function returns the .NET Framework type of a
specified variable. It takes a variable or a constant of any type as a parameter, and
returns the System.Type value that represents the .NET Framework type of the
expression that is passed as a parameter to the GETDOTNETTYPE function.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 27

The following code examples show possible uses and resulting values of
GETDOTNETTYPE

GETDOTNETTYPE examples

// Returns System.Boolean

MESSAGE('%1',GETDOTNETTYPE(1 = 2));

// Returns System.String

MESSAGE('%1',GETDOTNETTYPE('some text'));

// Returns System.Int32

MESSAGE('%1',GETDOTNETTYPE(Cust.Blocked));

// Returns System.Xml.Linq.XDocument

MESSAGE('%1',GETDOTNETTYPE(XDocument));

// InStr is InStream

// Returns System.IO.Stream

MESSAGE('%1',GETDOTNETTYPE(InStr));

GETDOTNETTYPE function can be used in C/AL in the situations where typeof
keyword would be used in C#.

In the following example, the GETDOTNETTYPE is used to create an instance of an
array that holds five elements of C/AL type Decimal.

GETDOTNETTYPE Example

// Dec is Decimal

// Array is System.Array

Array := Array.CreateInstance(GETDOTNETTYPE(Dec),5);

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 28

CANLOADTYPE

The CANLOADTYPE function checks whether a .NET type can be loaded by
Microsoft Dynamics NAV 2013. You can use this function to check whether an
assembly is installed on the target computer, or if you have sufficient security
permissions to use the assembly before accessing the assembly through a DotNet
variable in the C/AL code.

The following example shows how to use the CANLOADTYPE function:

CANLOADTYPE Example

IF CANLOADTYPE(FileWatcher) THEN BEGIN

 FileWatcher := FileWatcher.FileSystemWatcher;

 FileWatcher.Path := 'C:\';

 FileWatcher.NotifyFilter := 317;

 FileWatcher.EnableRaisingEvents := TRUE;

END ELSE

 MESSAGE('The file system watcher functionality is not available.');

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 29

Lab 11.1: Use a Dictionary Object
Scenario

Isaac, a developer at Cronus International Ltd., is developing a report that shows
the profit and loss statement for a specific customer. He has to calculate the sum
of all transactions for each General Ledger (G/L) account where Income/Balance
is Income Statement, and where the G/L entries are related to transactions of the
specified customer. He decides to use the System.Collections.Generic.Dictionary
class because of its fast performance for random data access to develop the
algorithm that is used by the required report.

Exercise 1: Declare and Instantiate a Dictionary
Exercise Scenario

Isaac creates a new codeunit, and declares and instantiates a
System.Collections.Generic.Dictionary variable. He then writes a function that
accepts a parameter of the same type and a customer number. Finally, he calls
that function from the OnRun trigger for testing. The dictionary variable uses G/L
Account Nos. as key, and the total amount per G/L Account as value.

Task 1: Creating a new codeunit

High Level Steps
1. Create a new codeunit and save it as 90014, G/L Dictionary By

Customer.
2. Create a new function named PopulateDictionary which accepts two

parameters. Name one parameter Dict of type DotNet and subtype
System.Collections.Generic.Dictionary`2. Name the second parameter
CustNo of type Code[20].

Detailed Steps
1. Create a new codeunit and save it as 90014, G/L Dictionary By

Customer.
a. Click Tools > Object Designer.
b. In the Object Designer window, click Codeunit, and then click

New.

c. In the C/AL Editor window, click File > Save.
d. In the ID field, enter “90014”.
e. In the Name field, enter “G/L Dictionary By Customer”.
f. Click OK.

2. Create a new function named PopulateDictionary which accepts two
parameters. Name one parameter Dict of type DotNet and subtype
System.Collections.Generic.Dictionary`2. Name the second parameter
CustNo of type Code[20].

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 30

a. Click View > C/AL Globals.

b. In the Functions tab, enter “PopulateDictionary”, and then click
Locals.

c. In the Name field, enter “Dict”, and then select DotNet as
DataType.

d. In the Subtype field, click the AssistEdit button.
e. In the .NET Type List window, look up the Assembly field.
f. In the Assembly List window, in the .NET tab, select mscorlib,

and then click OK.

g. In the .NET Type List window, select
System.Collections.Generic.Dictionary`2, and then click OK.

h. In the C/AL Locals window, create a new parameter.
i. In the Name field, enter “CustNo”, and then select Code as

DataType.
j. In the Length field, enter “20”.
k. Close the C/AL Locals window, and then close the C/AL Globals

window.

l. Click File > Save.

Task 2: Write code to Test the PopulateDictionary function

High Level Steps
1. Declare a global variable of type

System.Collections.Generic.Dictionary`2, and then name it DictTest.

2. Declare a global variable of type Record, and subtype G/L Account,
and name it GLAcc.

3. Write code in the OnRun trigger to call the PopulateDictionary
function that uses DictTest and constant ”10000” as parameters.
Make sure that you create an instance of the DictTest variable before
passing it as a parameter.

4. Add code to the OnRun trigger to iterate through all G/L Accounts. It
shows a message if the DictTest contains a key equal to the G/L
Account No. Show the value of the cached key in the DictTest
dictionary.

Detailed Steps
1. Declare a global variable of type

System.Collections.Generic.Dictionary`2, and then name it DictTest.
a. Click View > C/AL Globals.
b. In the Variables tab, in the Name field, enter “DictTest”, then

select DotNet as DataType.
c. In the Subtype field, click AssistEdit.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 31

d. In the .NET Type List window, look up the Assembly field.

e. In the Assembly List window, in the .NET tab, select mscorlib,
and then click OK.

f. In the .NET Type List window, select
System.Collections.Generic.Dictionary`2, and then click OK.

2. Declare a global variable of type Record, and subtype G/L Account,

and name it GLAcc.
a. In the C/AL Globals window, create a new variable.

b. In the Name field, enter “GLAcc”.
c. Select Record as DataType, and then in the Subtype field, type

“15”.
d. Close the C/AL Globals window.

3. Write code in the OnRun trigger to call the PopulateDictionary

function that uses DictTest and constant ”10000” as parameters.
Make sure that you create an instance of the DictTest variable before
passing it as a parameter.
a. In the OnRun trigger, write the following code:

OnRun Trigger

DictTest := DictTest.Dictionary;

PopulateDictionary(DictTest,'10000');

4. Add code to the OnRun trigger to iterate through all G/L Accounts. It
shows a message if the DictTest contains a key equal to the G/L
Account No. Show the value of the cached key in the DictTest
dictionary.
a. Append the following code to the OnRun trigger:

Additional OnRun Trigger Code

GLAcc.RESET;

IF GLAcc.FINDSET THEN

 REPEAT

 IF DictTest.ContainsKey(GLAcc."No.") THEN

 MESSAGE('Total for %1 is %2',

 GLAcc."No.",

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 32

 DictTest.Item(GLAcc."No."));

 UNTIL GLAcc.NEXT = 0;

Results

A new codeunit object, 90014, G/L Dictionary By Customer, that has a function
that populates G/L accounts that are involved in transactions for a specific
customer.

Exercise 2: Populate the dictionary
Exercise Scenario

Isaac writes the code in the PopulateDictionary function that iterates through all
G/L Entries. This function analyzes whether there are Customer Ledger Entries
that belong to the specified customer. If there are, then the total amount of the
G/L Entry is stored in the dictionary.

Task 1: Iterate through all G/L Accounts

High Level Steps
1. In PopulateDictionary function, make sure that the Dict parameter is

not null. If it is null, instantiate a new
System.Collections.Generic.Dictionary. Otherwise, make sure that Dict
is empty.

2. Append code to the PopulateDictionary function to make sure that
there are no filters on the global variable GLAcc. Then write code
which iterates through all GLAcc that have Income/Balance equal to
Income Statement.

Detailed Steps
1. In PopulateDictionary function, make sure that the Dict parameter is

not null. If it is null, instantiate a new
System.Collections.Generic.Dictionary. Otherwise, make sure that Dict
is empty.
a. Write the following code in the PopulateDictionary function.

Instantiate or clear the dictionary

IF ISNULL(Dict) THEN

 Dict := Dict.Dictionary

ELSE

 Dict.Clear;

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 33

2. Append code to the PopulateDictionary function to make sure that

there are no filters on the global variable GLAcc. Then write code
which iterates through all GLAcc that have Income/Balance equal to
Income Statement.
a. Append the following code to the PopulateDictionary function.

Iterate through income statement G/L accounts

GLAcc.RESET;

GLAcc.SETRANGE("Income/Balance",

 GLAcc."Income/Balance"::"Income Statement");

IF GLAcc.FINDSET THEN

 REPEAT

 UNTIL GLAcc.NEXT = 0;

Task 2: Iterate through all G/L Entries for current G/L Account

High Level Steps
1. Declare a global variable of type Record, and subtype G/L Entry.

Name it GLEntry.
2. Within the REPEAT..UNTIL block for the GLAcc variable, iterate

through all G/L Entries for current G/L Account.

Detailed Steps
1. Declare a global variable of type Record, and subtype G/L Entry.

Name it GLEntry.

a. In the C/AL Globals window, create a new variable. In the Name
field, enter “GLEntry”, and then select Record as the DataType.

b. Then in Subtype field, type “17”.

2. Within the REPEAT..UNTIL block for the GLAcc variable, iterate

through all G/L Entries for current G/L Account.
a. Within the REPEAT..UNTIL block for the GLAcc variable, write the

following code.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 34

Iterate through G/L Entries for a G/L Account

GLEntry.RESET;

GLEntry.SETCURRENTKEY("G/L Account No.");

GLEntry.SETRANGE("G/L Account No.",GLAcc."No.");

IF GLEntry.FINDSET THEN

 REPEAT

 UNTIL GLEntry.NEXT = 0;

Task 3: Check whether there are Customer Ledger Entries for a
specified customer

High Level Steps
1. Declare a global variable of type Record, and subtype Cust. Ledger

Entry. Name it CustLedgEntry.

2. Within the REPEAT..UNTIL block of the GLEntry variable, check
whether there are customer ledger entries with the same Transaction
No. that belong to the customer that is specified by the CustNo
parameter.

Detailed Steps
1. Declare a global variable of type Record, and subtype Cust. Ledger

Entry. Name it CustLedgEntry.

a. In the C/AL Globals window, create a new variable. In the Name
field, type “CustLedgEntry”.

b. Select Record as DataType, and then in Subtype field enter “21”.

2. Within the REPEAT..UNTIL block of the GLEntry variable, check
whether there are customer ledger entries with the same Transaction
No. that belong to the customer that is specified by the CustNo
parameter.

a. Within the REPEAT..UNTIL block of the GLEntry variable, write the
following code.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 35

Check matching customer transactions

CustLedgEntry.RESET;

CustLedgEntry.SETRANGE("Customer No.",CustNo);

CustLedgEntry.SETRANGE("Transaction No.",GLEntry."Transaction No.");

IF NOT CustLedgEntry.ISEMPTY THEN BEGIN

END;

Task 4: Store the total in the dictionary

High Level Steps
1. Declare a global variable of type Decimal. Name it AccTotal.

2. Check whether the current G/L Account No. is already in the
dictionary. If so, retrieve the value into the AccTotal variable. If no, set
AccTotal to zero.

3. If it exists, remove the key from the dictionary, and then add the
actual G/L Entry to the AccTotal amount. Store the AccTotal amount
in the dictionary with the key of G/L Account No.

Detailed Steps
1. Declare a global variable of type Decimal. Name it AccTotal.

a. In the C/AL Globals window, create a new variable.
b. In the Name field, enter “AccTotal”.
c. Select Decimal as DataType.

2. Check whether the current G/L Account No. is already in the

dictionary. If so, retrieve the value into the AccTotal variable. If no, set
AccTotal to zero.

a. Within the BEGIN..END block of the Customer Ledger Entry
check, and write the following code.

Check if key exists in the dictionary

IF Dict.ContainsKey(GLAcc."No.") THEN

 AccTotal := Dict.Item(GLAcc."No.")

ELSE

 AccTotal := 0;

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 36

3. If it exists, remove the key from the dictionary, and then add the

actual G/L Entry to the AccTotal amount. Store the AccTotal amount
in the dictionary with the key of G/L Account No.
a. Append the following code after the code that was added in the

previous task and within the same BEGIN..END block.

Store the value into the dictionary.

AccTotal := AccTotal + GLEntry.Amount;

IF Dict.ContainsKey(GLAcc."No.") THEN

 Dict.Remove(GLAcc."No.");

Dict.Add(GLAcc."No.",AccTotal);

 Note: In C# or Visual Basic .NET, you do not remove the key/value pair from
the dictionary first. Because of the syntactic specifics of C/AL, this is the simplest
way to replace an existing key in the dictionary with a new value.

Task 5: Testing the function

High Level Steps
1. Run the codeunit to test it.

Detailed Steps
1. Run the codeunit to test it.

a. Click File > Save.
b. Click File > Run.

Results

Functional PopulateDictionary function

Streaming
Streaming is an important concept in the .NET Framework. There are several .NET
Framework types that facilitate management of different types of data streams. In
Microsoft Dynamics NAV 2013, there are two data types which handle streams:
the InStream and the OutStream. These data types directly map to the
System.IO.Stream .NET Framework type. They can be assigned to and from the
DotNet variables of the System.IO.Stream type or its descendant types.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 37

In Microsoft Dynamics NAV 2013 the data types that handle streams do not
differentiate between the types of streams. These data types provide an abstract
programming interface that relieves developers from understanding the intrinsic
details of a specific stream implementation. In the .NET Framework there are
different types of streams that address specific scenarios that involve data
streaming.

Types of Streams in .NET

The base type which handles streams in the .NET Framework is System.IO.Stream.
It is an abstract type, which means that objects of this kind cannot be directly
instantiated. However, you can use variables of type System.IO.Stream to provide
a common set of methods and properties for managing streams in a generic way,
much like InStream and OutStream in C/AL.

There are two primary streaming types in the .NET Framework. These facilitate
specific data streaming scenarios. These types are as follows.

.NET Framework Type Description

System.IO.MemoryStream Manages streams whose backing data store
is memory.

System.IO.FileStream Exposes a stream programming interface
around files that allow stream-based read
and write access to files that are stored in
the file system.

 Note: There are many other less frequently used stream types in the .NET
Framework that address other specific scenarios, such as data compression, network
transfer, printing, or encryption.

Pass Streams between C/AL and .NET

In C/AL, there are two types of stream types. The InStream type handles reading
the data from the underlying data source. The OutStream type handles writing
data into the underlying data source. In C/AL, those two data types are
incompatible, and they expose different sets of functions. Variables of these two
types cannot be assigned between the types.

Unlike C/AL, there is one base stream type, the System.IO.Stream. This stream type
handles data access in both directions. Variables of this kind can be freely
assigned to one another, regardless of which direction of data access they are
intended to support.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 38

DotNet variables that reference the System.IO.Stream or one of its descendants
can be assigned to variables of type InStream and OutStream. The opposite is also
true. Usually, the DotNet variables of System.IO.Stream type can be used to
replace InStream or OutStream variables in C/AL code.

 Note: You cannot use variables of System.IO.Stream type as parameters to
CREATEINSTREAM or CREATEOUTSTREAM functions. In those two instances, the
actual InStream or OutStream variable must be used. For all other purposes, you
can replace the InStream and OutStream with System.IO.Stream.

Following are typical situations when you use .NET Framework stream types in
C/AL:

• To import or export data to or from Microsoft Dynamics NAV 2013
database directly from or to a .NET Framework object through
XMLports

• To stream data from .NET Framework objects to files or BLOB fields in
Microsoft Dynamics NAV 2013 database

• To pass data between different .NET Framework objects

Using System.IO.Stream with XMLports

You can use variables of System.IO.Stream type, or its descendants, to specify the
source or destination of XMLports by using SETSOURCE and SETDESTINATION
functions calls. For both functions to work, the DotNet variable of type
System.IO.Stream first must be instantiated. In addition, you can provide an
instance of a System.IO.Stream descendant to IMPORT or EXPORT functions of
XMLPORT system object.

The following example shows how to export data from an XMLport to a file using
System.IO.MemoryStream.

Stream to file from XMLport through .NET Framework

// Stream is System.IO.Stream

// MemStream is System.IO.MemoryStream

Stream := MemStream.MemoryStream;

XMLPORT.EXPORT(XMLPORT::"Export Contact",Stream);

// FileContact is File

// Outstr is OutStream

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 39

FileContact.CREATE('C:\Temp\Contacts.xml');

FileContact.CREATEOUTSTREAM(Outstr);

Stream.Seek(0,0);

COPYSTREAM(Outstr,Stream);

FileContact.CLOSE;

Before you use .NET Framework streams with read operations or with
COPYSTREAM function, it is important to position the stream at the beginning by
using the Seek method of System.IO.Stream type. In the example that was
mentioned earlier, the COPYSTREAM function did not copy any data from the
System.IO.Stream object into the Outstr object. This is because after the stream
was written to use XMLPORT.EXPORT function, the stream is positioned at the
end.

 Note: System.IO.Stream object can be used interchangeably to replace both
InStream and OutStream objects. The same DotNet variable of this .NET
Framework type can act as both the input and output stream with the same
instance of the System.IO.Stream object.

Passing C/AL Streams to .NET Framework Objects

You can use InStream and OutStream C/AL types to replace System.IO.Stream
type when passing variables as parameters from C/AL to .NET Framework objects.
When passing InStream and OutStream variables to .NET Framework objects in
this manner, you must understand how the .NET Framework code uses the stream
object that you passed to it. If the .NET Framework object reads the data, you
should pass the InStream. If the .NET Framework object writes the data, you
should pass the OutStream.

Both InStream and OutStream map to System.IO.Stream, and the .NET Framework
does not differentiate between read or write stream types. If you pass the
OutStream object to replace an InStream object, or if the code within the .NET
Framework object being called does not explicitly position the stream object to
the beginning, the read operation fails. When an OutStream object is mapped to
the System.IO.Stream, the System.IO.Stream object is always positioned at the end
of the stream.

For example, you can use an InStream object to pass data from Microsoft
Dynamics NAV 2013 database to an XDocument .NET Framework object.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 40

Use InStream instead of System.IO.Stream in XDocument.Load
method

// ObjectMetadata is Record 2000000071, Object Metadata

// Instr is InStream

// XDoc is Dot Net, System.Xml.Linq.XDocument

ObjectMetadata.GET(ObjectMetadata."Object Type"::Page,22);

ObjectMetadata.CALCFIELDS(Metadata);

ObjectMetadata.Metadata.CREATEINSTREAM(Instr);

XDoc := XDoc.Load(Instr);

MESSAGE('%1',XDoc.ToString);

Demonstration: Use Streams to Import through XMLports

The following demonstration shows how to convert a string variable into a stream.
You then use the resulting System.IO.MemoryStream instance as the source for
the XMLPORT.IMPORT function to import plain text data into Microsoft
Dynamics NAV 2013 database.

Demonstration Steps

1. Create a new codeunit and save it as codeunit 90015, Import Fault
Codes From String.

a. Click Tools > Object Designer.
b. Click Codeunit, and then click New.
c. In the C/AL Editor window, click File > Save.
d. In the Save As window, in the ID field, type “90015”.

e. In the Name field, type “Import Fault Codes From String”.
f. Click OK.

2. Declare the variables.

a. Click View > C/AL Globals
b. On the Variables tab, declare the following variables.

Name DataType Subtype

MemStream DotNet System.IO.MemoryStream

Encoding DotNet System.Text.ASCIIEncoding

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 41

Name DataType Subtype

Data Text

Tab Char

Cr Char

Lf Char

 Note: You can find the System.IO.MemoryStream class in the mscorlib
assembly.

3. In OnRun trigger, write code that assigns the following values: 9 to
Tab, 13 to Cr and 15 to Lf. Then write code that stores three lines of
plain text data, according to the format that is defined in XMLport
5901, Import IRIS to Fault Codes.
a. In the OnRun trigger, enter the following code.

Defining the plain text data for import

Tab := 9;

Cr := 13;

Lf := 10;

Data :=

 STRSUBSTNO('%1%2Description for %1%2%3%4','TEST1',Tab,Cr,Lf) +

 STRSUBSTNO('%1%2Description for %1%2%3%4','TEST2',Tab,Cr,Lf) +

 STRSUBSTNO('%1%2Description for %1%2%3%4','TEST3',Tab);

4. Append code to OnRun trigger, to convert the string to a
System.IO.MemoryString, by using the
System.Text.Encoding.AsciiEncoding type. Then import the resulting
stream into Microsoft Dynamics NAV 2013 database through
XMLport 5901, Import IRIS to Fault Codes.
a. Append the following code to OnRun trigger:

Convert string to stream, and import the stream

MemStream :=

 MemStream.MemoryStream(

 Encoding.ASCII.GetBytes(Data));

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 42

MemStream.Seek(0,0);

XMLPORT.IMPORT(

 XMLPORT::"Import IRIS to Fault Codes",MemStream);

5. Run the codeunit, and verify that the data was imported into table
5918, Fault Code.
a. Click File > Run.

b. Click Tools > Object Designer, and then click Table.
c. Select table 5918, Fault Code, and then click Run.
d. In the Edit – Fault Code window, scroll to the bottom and verify

that the three lines were added.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 43

Module Review
Module Review and Takeaways

Microsoft .NET Framework is a powerful and rich programming framework that
lets you access a wide choice of types and methods to extend the functionality of
Microsoft Dynamics NAV 2013 customizations. With .NET Framework
Interoperability you can integrate with the Framework Class Library that is
provided by Microsoft, with third-party applications or objects built in addition to
.NET Framework. You can integrate to your own .NET Framework objects that you
developed in addition to the .NET Framework by using Visual Studio. You use the
DotNet type Microsoft Dynamics NAV 2013 to reference the .NET Framework
types.

You can use .NET Framework Interoperability to extend the functionality of both
the Microsoft Dynamics NAV 2013 Server and the client. It is even possible to
share data between the server and the client through serialization.

When declaring global DotNet variables, you can subscribe to any events that are
published by the referenced .NET Framework type. The events in the .NET
Framework can be synchronous or asynchronous. Special precaution steps must
be taken if subscribing to asynchronous events.

The .NET Framework uses a much wider range of built-in data types. Even though
certain types are converted automatically to C/AL types, not all .NET Framework
types map directly to simple C/AL types.

Pay special attention when you map numeric data. The .NET Framework String
and DateTime types are not converted automatically to C/AL types. This lets you
use the rich set of functions to manipulate text and dates.

C/AL includes several functions that facilitate coding with DotNet variables
without developing custom .NET Framework types. Use these functions for simple
tasks, such as verifying whether a DotNet variable references a valid object, or to
return specific .NET Framework type information.

In Microsoft Dynamics NAV 2013, there is strong interoperability between C/AL
and the .NET Framework stream types. This lets you easily pass the data between
InStream and OutStream and the .NET Framework types, such as
System.IO.MemoryStream, to import and export data to and from Microsoft
Dynamics NAV 2013.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 44

Test Your Knowledge

Test your knowledge with the following questions.

1. Variables of DotNet type can target the Microsoft Dynamics NAV server only.

() True

() False

2. Which property do you set to automatically create event triggers for events of
a DotNet variable?

3. You can only call the default constructor of a .NET class. C/AL does not
support overloaded contructors.

() True

() False

4. Which function do you call to test at the run time whether you can use a .NET
class in your code?

() GETDOTNETTYPE

() CANLOADTYPE

() You cannot test this at run time. If you cannot use a .NET class, the
compile-time error occurs.

5. Which function can you call to test if a DotNet variable references a valid
instance of an object?

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 45

6. .NET Framework strings are Unicode. However, when you map a .NET string to
C/AL text data type, Unicode information is lost, and SQL Server database
collation rules determine how the string is converted to text.

() True

() False

7. Which .NET Framework class can you use in place of InStream or OutStream
types in C/AL code?

8. In C/AL use native .NET Framework classes in and any .NET Framework classes
that you develop using Microsoft Visual Studio.

() True

() False

9. If you want to use your custom .NET Framework class from C/AL code to run
on the server, where do you need to deploy it?

() Global Assembly Cache on the server or Service\Add-ins directory on
the server.

() Global Assembly Cache on both the client and the server or
Service\Add-ins directory on both the client and the server.

() Service\Add-ins directory on the server only. You cannot use classes
from the Global Assembly Cache in C/AL.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 46

Test Your Knowledge Solutions

Module Review and Takeaways

1. Variables of DotNet type can target the Microsoft Dynamics NAV server only.

() True

(√) False

2. Which property do you set to automatically create event triggers for events of
a DotNet variable?

MODEL ANSWER:

WithEvents

3. You can only call the default constructor of a .NET class. C/AL does not
support overloaded contructors.

() True

(√) False

4. Which function do you call to test at the run time whether you can use a .NET
class in your code?

() GETDOTNETTYPE

(√) CANLOADTYPE

() You cannot test this at run time. If you cannot use a .NET class, the
compile-time error occurs.

5. Which function can you call to test if a DotNet variable references a valid
instance of an object?

MODEL ANSWER:

ISNULL

6. .NET Framework strings are Unicode. However, when you map a .NET string to
C/AL text data type, Unicode information is lost, and SQL Server database
collation rules determine how the string is converted to text.

() True

(√) False

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 11: Microsoft .NET Framework Interoperability

11 - 47

7. Which .NET Framework class can you use in place of InStream or OutStream
types in C/AL code?

MODEL ANSWER:

System.IO.Stream

8. In C/AL use native .NET Framework classes in and any .NET Framework classes
that you develop using Microsoft Visual Studio.

(√) True

() False

9. If you want to use your custom .NET Framework class from C/AL code to run
on the server, where do you need to deploy it?

(√) Global Assembly Cache on the server or Service\Add-ins directory on
the server.

() Global Assembly Cache on both the client and the server or
Service\Add-ins directory on both the client and the server.

() Service\Add-ins directory on the server only. You cannot use classes
from the Global Assembly Cache in C/AL.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

11 - 48

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

	Module 11: Microsoft .NET Framework Interoperability
	Module Overview
	Objectives

	The DotNet Data Type
	Declaring A DotNet Variable
	Deployment Options
	Global Assembly Cache (GAC)
	Local Application Folder
	Resolution Priority

	Client-side and Server-side Execution
	Events
	Client-side and Server-side Events
	Synchronous and Asynchronous Events

	Constructors
	Static Classes and Members
	Demonstration: Declaring a DotNet Variable and Subscribing to Events
	Demonstration Steps
	LogEvent Function Trigger
	OnOpenPage Code
	FileWatcher::Created and FileWatcher::Deleted Event Trigger Code

	Comparing Values
	Invalid comparison of DotNet variables
	Valid comparison of DotNet variables
	Comparison Examples

	Data Type Mapping and Assignment
	Bi-directional Mapping
	Limited Mapping
	Mapping of System.String and System.DateTime
	Data Type mapping for System.String and System.DateTime

	Assign Instance References
	Assigning DotNet variables

	Assignment Between DotNet Subtypes
	Assignment between types
	System.Object

	Local and Global Scope
	Serializing Data Between Client And Server

	.NET Framework interoperability C/AL Functions
	null and ISNULL function
	ISNULL function

	System.Type .NET Framework Type
	GETDOTNETTYPE
	GETDOTNETTYPE examples
	GETDOTNETTYPE Example

	CANLOADTYPE
	CANLOADTYPE Example

	Lab 11.1: Use a Dictionary Object
	Scenario
	Exercise 1: Declare and Instantiate a Dictionary
	Exercise Scenario
	Task 1: Creating a new codeunit
	High Level Steps
	Detailed Steps

	Task 2: Write code to Test the PopulateDictionary function
	High Level Steps
	Detailed Steps
	OnRun Trigger
	Additional OnRun Trigger Code

	Results
	Exercise 2: Populate the dictionary
	Exercise Scenario
	Task 1: Iterate through all G/L Accounts
	High Level Steps
	Detailed Steps
	Instantiate or clear the dictionary
	Iterate through income statement G/L accounts

	Task 2: Iterate through all G/L Entries for current G/L Account
	High Level Steps
	Detailed Steps
	Iterate through G/L Entries for a G/L Account

	Task 3: Check whether there are Customer Ledger Entries for a specified customer
	High Level Steps
	Detailed Steps
	Check matching customer transactions

	Task 4: Store the total in the dictionary
	High Level Steps
	Detailed Steps
	Check if key exists in the dictionary
	Store the value into the dictionary.

	Task 5: Testing the function
	High Level Steps
	Detailed Steps

	Results

	Streaming
	Types of Streams in .NET
	Pass Streams between C/AL and .NET
	Using System.IO.Stream with XMLports
	Stream to file from XMLport through .NET Framework

	Passing C/AL Streams to .NET Framework Objects
	Use InStream instead of System.IO.Stream in XDocument.Load method

	Demonstration: Use Streams to Import through XMLports
	Demonstration Steps
	Defining the plain text data for import
	Convert string to stream, and import the stream

	Module Review
	Module Review and Takeaways
	Test Your Knowledge

	Test Your Knowledge Solutions
	Module Review and Takeaways

