
7 - 1

MODULE 7: C/AL FUNCTIONS

Module Overview
Sometimes identical code must be run from different locations. Other times a
similar code with different variable values must be run from different locations.
Putting such code in a function when it must be called from different locations
saves development time, and streamlines managing and debugging the code.

C/AL provides many built-in functions that you can use in your code or from your
objects. These functions are predefined to achieve certain tasks, such as
performing a string transformation, retrieving a system date, and so on.

To successfully build custom Microsoft Dynamics NAV 2013 applications, you
must be familiar with the built-in C/AL functions, and understand how to create
custom functions.

Objectives

The objectives are:

• Explain the concepts of functions and parameters.

• Explain the C/AL Symbol Menu.

• Describe the use and syntax of data access, filtering, and
manipulation functions.

• Describe the use and syntax of user interaction functions.

• Describe the use and syntax of string functions.

• Describe the use and syntax of system functions.

• Describe the use and syntax of date functions.

• Describe the use and syntax of number functions.

• Describe the use and syntax of array functions.

• Describe the use and syntax of several other important functions.

• Provide an overview of the benefits of creating custom functions.

• Explain the concepts of local functions and local variables.

• Create custom functions in a page and call the functions from
Actions.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 2

Functions and Parameters
Functions are a fundamental programming concept. A function is a named part of
a program, also known as a subprogram or a subroutine. When code that is
running reaches a function, the main application is paused while the function
code is handled.

Lesson Objectives

Functions

When the function name, which is known as the identifier, is used, the current
program is suspended and the trigger code for the specified function executes.
Using the identifier in this manner "calls" the function. When the trigger code in
the called function completes, the function "returns" to where it is called from. The
way that the function is called determines what happens when it returns.

A function can be used in an expression.

For example, the following code uses a function named CalculatePrice in an
expression:

Function call in an expression

TotalCost := Quantity * CalculatePrice;

The CalculatePrice function returns a value that is used in evaluating the
expression. This return value then is multiplied by the Quantity variable. That
result is assigned to the TotalCost variable.

You can call a function by using a function call statement. This statement only
calls the function and returns no value.

The example shows how to call a function named RunFunction as a statement:

Function call statement

IF Quantity > 5 THEN
 RunFunction;

The RunFunction returns no data back to the calling trigger.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 3

Parameter

A parameter is one or more variables or expressions that are sent to the function
through the function call. The parameter provides information to the function,
and the function can change that information. If a function has parameters, the
function identifier has a set of parentheses that follows it. Within these
parentheses are one or more parameters. If there is more than one parameter, the
parameters are separated by commas.

The following example shows how to call a function that has two parameters:

Function call with parameters

CubeVolume := POWER(SideLength,3);

Parameters can be simple values or expressions. If an expression is used as a
parameter, then it is evaluated before the value is passed to the function.

In the following example, use an expression as a parameter for the Power
function:

Expression as a parameter

GrossVolume := POWER(SideLength + PackagingThickness * 2,3);

Pass by Value

When a parameter only sends a piece of information to a function, the parameter
is passed by value. The parameter knows only the value of the variable or
expression that is used for the parameter. Because it is only a value, any change
that the function makes to this parameter does not affect any variables in the
calling trigger.

Pass by Reference

When a parameter is passed to the function and the function changes that
parameter, the parameter is passed by reference. The parameter knows the
variable's location in the computer memory, and it passes the computer memory
location to the new function. Any changes that the function makes to this kind of
parameter are permanent and affect variables in the calling trigger.

If a parameter is passed by value, you can use any expression for that parameter.
However, if a parameter is passed by reference, a variable must be used for that
parameter so that its value can be changed. Variables have a location in memory,
whereas expressions or constants do not.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 4

 Note: When you use text parameters by reference, the actual length of the
parameter is the length of the variable being passed, instead of the declared length
of the parameter. For example, if you pass a text variable of length 10 by reference
to a text parameter of length 20, the actual MAXSTRLEN of the parameter is 10.

Formal and Actual Parameters

A formal parameter is declared in the function definition. For example, the DELSTR
function has the following syntax:

Code Example

NewString := DELSTR(String, Position [, Length])

The words String, Position, and Length are the formal parameters.

The actual parameter is used when the function is called.

The following example shows how to call the DELSTR function:

Calling DELSTR

UserInput := DELSTR(UserInput,Comma,1);

The variables UserInput and Comma and the constant 1 are the actual parameters.

Actual parameters always correspond to the formal parameters. The formal and
actual parameters must match in the number, order, and data type. The actual
parameter UserInput becomes the formal parameter String; the actual parameter
Comma becomes the formal parameter Position; and the actual parameter 1
becomes the formal parameter Length.

Because this code uses a pass-by value for all three parameters, the values of the
three actual parameters are actually passed to the function. Therefore, the actual
parameters are not changed when the formal parameters are changed inside the
function.

If the code uses a pass-by reference instead, it passes the variable references
(memory addresses) to the function. Then the actual parameters are changed if
the corresponding formal parameters are changed inside the function. Because
constants cannot be changed, 1 cannot be used as an actual parameter if Length
is passed by reference.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 5

Built-in Functions

A built-in function is provided by the C/AL language. Its trigger code cannot be
viewed, because it is built into the programming language. The following table
describes several built-in functions:

Function Name Description

MESSAGE Displays a message on the screen.

MAXSTRLEN Returns the defined length of a string variable.

COPYSTR Returns a part of a string.

CLEAR Clears the passed-in variable.

ARRAYLEN Returns the number of elements in an array.

Functions such as MESSAGE and CLEAR, have no return value. You can only call
them through a function call statement. Functions such as COPYSTR and
MAXSTRLEN return a value. You can use them in an expression. The CLEAR
function changes the passed-in parameter. It is an example of passing by
reference, whereas the other functions are examples of passing by value.

Review Built-in Functions
Use the C/AL Symbol Menu to review available variables and functions in the
current scope of the trigger. It also shows the built-in functions that are available
to you, together with their syntax.

The C/AL Symbol Menu

The following steps show how to open the C/AL Symbol Menu.

1. In the Object Designer, click Codeunit to access the codeunit list,
and then click New.

2. Select the first line under the OnRun trigger.
3. Click View > C/AL Symbol Menu.
4. Click through the elements in the left column, and view the functions

that are displayed.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 6

FIGURE 7.1: THE C/AL SYMBOL MENU

The MESSAGE Function

The following steps show how to review the MESSAGE function in the C/AL
Symbol Menu.

1. In the left column of the C/AL Symbol Menu, select the DIALOG
element to view the built-in functions.

2. In the right-side column, select the MESSAGE function.

FIGURE 7.2: THE MESSAGE FUNCTION IN THE C/AL SYMBOL MENU

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 7

The syntax of the MESSAGE function is displayed at the bottom of the frame,
above the command buttons in the C/AL Symbol Menu window.

The MESSAGE function has the following syntax:

Code Example

MESSAGE(String [, Value1] …)

The syntax informs you of the following:

• There is no return value.

• There is one mandatory parameter (String).

• There are multiple optional parameters, (The square brackets indicate
an optional parameter and the ellipsis (…) indicates multiples).

The ERROR Function

The following steps show how to review the ERROR function in the C/AL Symbol
Menu.

1. In the left column of the C/AL Symbol Menu, select the DIALOG
element.

2. In the right-side column, select the ERROR function.

FIGURE 7.3: THE ERROR FUNCTION IN THE C/AL SYMBOL MENU

You can see the syntax of the ERROR function at the bottom of the C/AL Symbol
Menu.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 8

The ERROR function has the following syntax:

Code Example

ERROR(String [, Value1] …)

The syntax of the ERROR function is identical to that of the MESSAGE function,
except for the function identifier.

When an ERROR function is called in a statement, the processing stops with an
error condition. The message is displayed in a similar manner to the MESSAGE
function.

The DATE2DMY Function

The following steps show how to review the DATE2DMY function in the C/AL
Symbol Menu.

1. In the left column of the C/AL Symbol Menu, select the SYSTEM
element.
The middle column lists function groupings, such as string functions,
numeric (mathematical) functions, and so on. Depending on the
selection in the middle column, the right-side column shows different
functions.

2. In the middle column, select the Date group, and in the right-side
column, select the DATE2DMY function.

FIGURE 7.4: THE DATE2DMY FUNCTION IN THE C/AL SYMBOL MENU

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 9

The DATE2DMY function has the following syntax:

Code Example

Number := DATE2DMY(Date, What)

The syntax informs you of the following:

• The function has a return value that is a number, and is indicated by
the “Number :=” right before the function identifier.

• The first parameter (Date) is an expression of type Date.

• The second parameter (What) is described in more detail in the online
Help.

3. Press F1.

The Microsoft Dynamics NAV Help window opens and displays information for
the DATE2DMY function. A complete description of the function role and values
that it returns is shown. The What parameter is an integer expression that can take
one of the following three values:

• If it is 1, this function returns the day of the month.

• If it is 2, this function returns the month (from 1 to 12).

• If it is 3, this function returns the year (the full 4 digits).

4. Close the codeunit without saving it.

Demonstration: Use the DATE2DMY Function

The following demonstration shows how to use the DATE2DMY function.

Demonstration Steps

1. Create a new codeunit, and save it as codeunit 90003, My Codeunit
4.
a. In Object Designer, click Codeunit.
b. Click New.
c. In the C/AL Editor window, on the File menu, click Save.
d. In the Save As dialog box, in the ID field, enter “90003”, then in

the Name field, enter “My Codeunit 4”, and then click OK.

2. Define variables.
a. Click View > C/AL Globals.

b. Define the following variables:

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 10

Name DataType Length

When Was It Date

Description Text 30

3. Type the code in the OnRun trigger that displays a message with the
name of the current month.
a. Type the following code in the OnRun trigger:

Code Example

"When Was It" := TODAY;
CASE DATE2DMY("When Was It",2) OF
 1:Description := 'January';
 2:Description := 'February';
 3:Description := 'March';
 4:Description := 'April';
 5:Description := 'May';
 6:Description := 'June';
 7:Description := 'July';
 8:Description := 'August';
 9:Description := 'September';
 10:Description := 'October';
 11:Description := 'November';
 12:Description := 'December';
END;
MESSAGE('%1 is in %2',"When Was It",Description);

4. Compile, save, and then close the codeunit.
a. Click File > Save.

b. In the Save dialog box, make sure that the Compiled check box
is selected.

c. Click OK.
d. Close the C/AL Editor window.

5. Run the codeunit and examine the result.

a. In Object Designer, select codeunit 90003.
b. Click Run.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 11

Data Access Functions
Accessing data is the most common task in a Microsoft Dynamics NAV 2013
application. In C/AL, Record is a complex data type that represents a single record
in a table. There are several member functions on the Record data type that
enable you to access rows in a table.

You can access rows either by iterating through a series of rows, or by directly
accessing a specific row by referring to its primary key values.

Not all data access functions are equally important. This lesson presents the
following functions:

• GET

• FIND

• FINDFIRST

• FINDLAST

• FINDSET

• NEXT

 Note: All code examples in this lesson imply a WITH block on a variable of
type Record.

GET

The GET function retrieves one record, based on the value of the primary key. For
example, if the No. field is the primary key of the Customer table, use the GET
function as follows:

Code Example

GET(Customer,'30000');

The result is that the record of customer 30000 is retrieved.

The GET function produces a run-time error if it fails. The return value is not
inspected by the code.

The following example shows how to inspect the return value of GET to avoid the
run-time error.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 12

Inspecting the return value of GET

IF GET(Customer,'4711') THEN

 // do some processing

 ELSE

 // do some error processing

The GET function searches for records, without regard to current filters, and it
does not change any filters. It always searches among all records in a table.

FIND

The differences between the GET function and the FIND function are as follows:

• The FIND function respects (and is limited by) the current setting of
filters.

• The FIND function can be instructed to look for records where the
key value is equal to, larger than, or smaller than the current key
values in a record.

• The FIND function can find the first or the last record, given the
sorting order that is defined by the current key.

Use these features in a variety of ways. When you develop applications under a
relational database management system, you frequently have one-to-many
relationships between tables. An example is the relationships between the Item
table that records items, and the Sales Line table that records the detail lines from
sales orders. A record in the Sales Line table can only be related to one item. But
each item can be related to any number of sales line records. An item record in
the Item table must not be deleted while there are still open sales orders that
include the item. The following code sample can be put in the OnDelete trigger
of the Item table, and shows how to check for this condition:

Code Example

SalesOrderLine.SETCURRENTKEY("Document Type,"No.");
SalesOrderLine.SETRANGE("Document Type",SalesOrderLine."Document
Type"::Order);
SalesOrderLine.SETRANGE(Type,SalesOrderLine.Type::Item);
SalesOrderLine.SETRANGE("No.","No.");
IF SalesOrderLine.FIND('-') THEN
 ERROR('You cannot delete because there are one or more outstanding sales
orders that include this item.');

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 13

 Best Practice: You should avoid using the FIND function as much as you can.
It is best to use FINDFIRST, FINDLAST, or FINDSET, depending on what you want
to achieve.

FIND, FINDFIRST, FINDLAST, FINDSET

To find the first record in a table, depending on the current key and filter, use the
FINDFIRST function. You should use the FINDFIRST function instead of FIND('-')
when only the first record is needed.

To find the last record in a table, depending on the current key and filter, use the
FINDLAST function. You should use the FINDLAST function instead of FIND('+')
when only the last record is needed.

To find a set of records in a table that correspond to a specified set of filters, use
the FINDSET function. You should use the FINDSET function when you want to
iterate through a record set, in combination with a REPEAT...UNTIL loop. The
FINDSET function only lets you iterate from the first record to the last. To iterate
from the last record to the first, you must use FIND('+') instead.

NEXT

The NEXT function is frequently used with FIND and FINDSET to step through
records of a table. The following code sample shows how to use the NEXT
function:

Code Example

FINDSET;
REPEAT
 // process record
UNTIL NEXT = 0;

Use the FINDSET function to locate the first record of the table. Afterward, use
the NEXT function to step through every record, until there are no more (then,
NEXT returns zero).

Sorting and Filtering Functions
When you access data from code, you seldom access all the rows in a table. You
usually set the key to guarantee a specific ordering of the rows. You set filters to
limit the record set to only those records that apply to the operation that you
want to be completed.

Similar to functions such as GET or FINDSET, Record data type has several
functions that manage key selection, sorting, and filtering.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 14

This lesson presents the following functions:

• SETCURRENTKEY

• SETRANGE

• SETFILTER

• GETRANGEMIN

• GETRANGEMAX

SETCURRENTKEY

Use the SETCURRENTKEY function to select a key for a record. This sets the
sorting order that is used for the associated table. It has the following syntax:

Code Example

[Ok :=] Record.SETCURRENTKEY(Field1, [Field2],...)

Following are several characteristics of the SETCURRENTKEY function:

• Inactive fields are ignored.

• When you search for a key, C/SIDE selects the first key that begins
with the specified field(s).

For example, even if you specify only one field as a parameter when the code calls
SETCURRENTKEY, the key that actually is selected may consist of more fields.

If no keys are found that include the specified field or fields, a run-time error
occurs unless the Boolean return value of SETCURRENTKEY is handled in the
code. If you handle the return value, you must decide what the program must do
if the function returns FALSE. Without the run-time error, the program continues
to run even though no matching key is found.

SETRANGE

The SETRANGE function sets a simple filter, such as a single range or a single
value, on a field.

SETRANGE has the following syntax:

SETRANGE syntax

 Record.SETRANGE(Field [,FromValue] [,ToValue])

If you specify both FromValue and ToValue parameters, the filter is a range filter,
and includes all the records with the value in the specified field between the

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 15

specified FromValue and ToValue. If you only specify FromValue parameter, the
filter is a single-value filter, and includes all records which have exactly the value
specified in FromValue in the specified field.

The SETRANGE function removes any previous filters on the specified field. If you
omit both the FromValue and ToValue parameters, the function removes any filter
that might already be set on the field.

The following code example shows how to use the SETRANGE function:

SETRANGE example

Customer.SETRANGE("No.", '10000', '30000');

This limits the Customer table by selecting only those records where the No. field
has a value between 10000 and 30000.

SETFILTER

The SETFILTER function sets a filter in a more general way than SETRANGE. It
allows you to specify filter expressions that include placeholders, operators, and
wildcard characters.

The SETFILTER function has the following syntax:

Code Example

Record.SETFILTER(Field, String, [Value],...)

The Field parameter is the field on which you want to set a filter. The String
parameter is a filter expression that can contain wildcard characters, operators,
and placeholders, such as %1, %2, and so on to indicate locations where the
system inserts values given as the Value parameters.

The following code example shows how to use the SETFILTER function:

SETFILTER example

Customer.SETFILTER("No.", '>10000 & <> 20000');

This code selects those records where the value in No. field is larger than 10000
and not equal to 20000.

The following code example achieves the same result as the previous one, but
through placeholder syntax:

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 16

SETFILTER example with parameters

Customer.SETFILTER("No.",'>%1&<>%2',Value1, Value2);

GETRANGEMIN and GETRANGEMAX

The GETRANGEMIN and GETRANGEMAX functions retrieve the minimum or
maximum value of the filter that is currently in effect on a field.

The GETRANGEMIN and GETRANGEMAX functions have the following syntax:

GETRANGEMIN and GETRANGEMAX syntax

Value := Record.GETRANGEMIN(Field)

Value := Record.GETRANGEMAX(Field)

The GETRANGEMIN and GETRANGEMAX functions cause a run-time error if the
filter currently in effect is not a range. For example, if a filter is set as follows:

Customer.SETFILTER("No.",'10000|20000|30000');

Then the following code fails, because the filter is not a range:

BottomValue := Customer.GETRANGEMIN("No.");

Data Manipulation Functions
Applications do not only read data, they also change data. C/AL includes a series
of functions that let you insert rows, change, or delete rows in a table. Even
though the syntax and the purpose of those functions are different, most of these
functions return a Boolean value that indicates whether they have succeeded or
not. If you do not handle the return value in your code, and the function call fails,
a run-time error occurs. If you handle the return value, then you have to decide
what the program must do if the function returns as FALSE.

The following functions are the most common manipulation functions:

• INSERT

• MODIFY

• MODIFYALL

• RENAME

• DELETE

• DELETEALL

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 17

INSERT

The INSERT function inserts a record in a table. INSERT returns a Boolean value
that indicates whether the insert operation succeeded or failed.

The following code sample shows how to use the INSERT function:

INSERT example

Customer.INIT;
Customer."No." := '4711';
Customer.Name := 'John Doe';
Customer.INSERT;

This code inserts a new record, with No. and Name having the assigned values,
whereas the other fields have their default values. Supposing that No. is the
primary key of the Customer table. The record is inserted in the Customer table
unless there already is a record in the table with the same primary key. In that
case, because the return value is not handled, a run-time error occurs.

MODIFY

The MODIFY function changes an existing record. MODIFY returns a Boolean
value that indicates whether the modify operation succeeded or failed.

The following code sample shows how to use the MODIFY function:

MODIFY Example

Customer.GET('4711');
Customer.Name := 'Richard Roe';
Customer.MODIFY;

The code changes the name of customer 4711 to Richard Roe.

MODIFYALL

The MODIFYALL function performs a bulk update of records. It also sets the value
of the specified field to the same specified value for all records. It respects the
current filters. This means that you can perform the update on a specified set of
records in a table.

The MODIFYALL function returns no value, nor does it cause an error if the set of
records to be changed is empty.

The following code sample shows how to use the MODIFYALL function:

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 18

Code Example

Customer.SETRANGE("Salesperson Code",'PS');
Customer.MODIFYALL("Salesperson Code",'JR');

The SETRANGE statement selects the records where the Salesperson Code is
“PS”. The MODIFYALL function changes these records to have the Salesperson
Code set to JR.

DELETE

Use the DELETE function to delete a record from the database. The record to be
deleted must be specified by using the values in the primary key fields before the
program calls the function. The DELETE function takes filters into consideration.

DELETE returns a Boolean value that indicates whether the delete operation
succeeded or failed.

The following code sample shows how to use the DELETE function:

DELETE example

Customer."No." := '4711';
Customer.DELETE;

DELETEALL

Use the DELETEALL function to delete all records that are selected by the filter
settings. If no filters are set, all records in the table are deleted.

The following code sample shows how to use the DELETEALL function to delete
all records where the Salesperson Code is PS from the Customer table:

DELETEALL Example

Customer.SETRANGE("Salesperson Code", 'PS', 'PS');
Customer.DELETEALL;

Similar to MODIFYALL, the DELETEALL function does not return the Boolean
parameter. It does not fail if no record was affected.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 19

Working with Fields
When you access data, you frequently have to perform actions on fields. For
example, you may want to modify a value in a field, check whether any or a
specific value is present in the field, or throw an error related to a field value. C/AL
includes several functions which let you manipulate the field values and fields
themselves.

The following functions are most frequently used with fields:

• CALCFIELDS

• SETAUTOCALCFIELDS

• CALCSUMS

• FIELDERROR

• FIELDCAPTION

• INIT

• TESTFIELD

• VALIDATE

CALCFIELDS

Use the CALCFIELDS function to calculate the FlowFields. If page controls or
report columns reference a FlowField, the FlowField is automatically calculated.
However, when you access a record variable from the code, then you must
explicitly calculate the value of a FlowField that you intend to use.

 Note: Any FlowField in a Rec or xRec variable in tables and pages is
automatically calculated when the record is retrieved. You never have to call
CALCFIELDS for FlowFields in these two built-in variables.

The following code example shows how to use the SETRANGE function to set a
filter and the CALCFIELDS function to calculate the FlowFields:

Code Example

SETRANGE("Date Filter",0D,TODAY);
CALCFIELDS(Balance,"Balance Due");

The CALCFIELDS function calculates the Balance and Balance Due fields by
considering filter setting and calculations that are defined as the CalcFormula
properties of the FlowFields.

In addition to calculating the value of a FlowField, the CALCFIELDS function also
retrieves the values of BLOB fields from the database. BLOB fields only will be

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 20

retrieved from the database if they are used as source expressions on page
controls or data item columns in reports. If you want to access a BLOB value from
the C/AL code, you must first call CALCFIELDS.

SETAUTOCALCFIELDS

Specifies the FlowFields that are automatically calculated whenever a record is
retrieved from the database. When you are writing code there seems to be no
difference between CALCFIELDS and SETAUTOCALCFIELDS. The
SETAUTOCALCFIELDS function can improve performance, because it reduces the
number of round trips to the database. Unlike CALCFIELDS, which always results
in a separate database call, SETAUTOCALCFIELDS retrieves the values for the
FlowFields in the same SQL Server operation as the other fields in the record.

Consider the following example:

CALCFIELDS and SETAUTOCALCFIELDS comparison

// Using CALCFIELDS

IF Customer.FINDSET THEN

 REPEAT

 Customer.CALCFIELDS(Balance,"Net Change");

 … // Do some additional processing.

 UNTIL Customer.NEXT=0;

// Using SETAUTOCALCFIELDS

Customer.SETAUTOCALCFIELDS(Balance,"Net Change");

IF Customer.FINDSET THEN

 REPEAT

 // Customer.Balance and Customer."Net Change" are auto calculated.

 … //Do some additional processing.

 UNTIL Customer.NEXT=0;

In the first block, the CALCFIELDS function retrieves the values of Balance and
Net Change fields after each row is read from the database as a separate
database operation. The FINDSET operation first selects the rows from the
database as a single operation. In each iteration through the set, another database
operation occurs that retrieves the FlowFields values.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 21

In the second block, SETAUTOCALCFIELDS specifies that Balance and Net
Change fields should be retrieved together with any other fields in the database.
The FINDSET operation then retrieves the rows, together with the specified
FlowField values in a single database operation.

CALCSUMS

The CALCSUMS function calculates the total of a column in a table. Similar to the
CALCFIELDS function, the CALCSUMS function considers current filter settings
when it performs the calculation.

The following code example shows how to select an appropriate key, set the
filters, and perform the calculation:

CALCSUMS example

SETCURRENTKEY("Customer No.");
SETRANGE("Customer No.",'10000','50000');
SETRANGE(Date,0D,TODAY);
CALCSUMS(Amount);

For CALCSUMS to work properly, you do not have to specify the field as a
SumIndexField in a table key. If you call CALCSUMS on a field that is not
configured as a SumIndexField, then all rows are read and summed
automatically.

 Note: Maintaining an index for a SumIndexField improves the performance
of CALCSUMS, but may decrease the performance of insert, modify, and delete
operations.

FIELDERROR

The FIELDERROR function stops the execution of the code causing a run-time
error. It also creates an error message for a field. It includes the field caption in the
error message. This makes it very versatile, and guarantees consistent end-user
experience across the application.

The following code sample shows how to use the FIELDERROR function:

FIELDERROR example

IF Item."Unit Price" < 10 THEN

 Item.FIELDERROR("Unit Price",'must be greater than 10');

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 22

This causes an appropriate message that shows, depending on whether Class
currently is empty or has a value.

You can add custom text if the default text does not suit the application. The
following code sample shows how to use the FIELDERROR function with a custom
text:

FIELDCAPTION

The FIELDCAPTION function returns the caption of a field. By using the
FIELDCAPTION function, you make sure that messages that you show to users
still accurately reflect the field caption even if the field caption is changed later.
You can use the FIELDCAPTION function together with the FIELDERROR
function.

The following code sample shows how to call FIELDCAPTION together with
FIELDERROR:

FIELDCAPTION example

FIELDERROR(Quantity,'must not be less than ' + FIELDNAME("Quantity Shipped"));

INIT

The INIT function initializes a record by assigning the default values for all non-
primary key fields in the table. If a default value for a field is defined by the
InitValue property, this value is used for the initialization; otherwise, the default
value of each data type is used.

The INIT function does not initialize the fields of the primary key.

The following example shows how to use the INIT function:

INIT example

Customer.INIT;

TESTFIELD

The TESTFIELD function tests if the value of a field matches the specified value. If
the values are not the same, the test fails, an error message is displayed, and a
run-time error occurs. If no test value is specified, then the function tests if there is
any value in the field.

 Note: Zero is treated as no value for numeric data types. FALSE is treated as
no value for Boolean. Date (0D) and time (0T) values are treated as no value.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 23

The following code sample causes a run-time error:

TESTFIELD Example

Code := 'DK'
TESTFIELD(Code,'ZX');

VALIDATE

Use the VALIDATE function to call the OnValidate trigger of a field. It accepts an
optional parameter that you can use to first set the value in the field to the
specified value, and then to call the OnValidate trigger.

The following code sample shows how to use the VALIDATE function to call the
OnValidate trigger of the Total Amount field:

VALIDATE example

VALIDATE("Total Amount");

The OnValidate trigger frequently checks the business rules and makes sure that
no business rules are violated by trying to store an invalid value into a field. For
example, the OnValidate trigger on the Item No. field of the Item Journal Line
table makes sure that the item that is selected by the user is not blocked.

Additionally, the OnValidate trigger typically sets values to other fields in the same
record, based on a value that is specified in the field being validated. For example,
the OnValidate trigger on the No. field of the Sales Line table populates many
other fields in the Sales Line table, such as Description, or Unit of Measure
Code.

 Note: OnValidate trigger typically checks changes other values.

User Interaction Functions
During code execution, the code frequently requires the user to provide certain
inputs. For example, the application asks the user to confirm an invoice posting
operation, or provide a selection of options before posting a sales order.
Additionally, after an operation is complete, you may want to inform the user
about the results of an operation. For example, after posting a journal, the
application informs the user that the journal was posted successfully.

The following functions give users feedback and an opportunity to input
information into the application:

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 24

• MESSAGE

• CONFIRM

• STRMENU

• ERROR

MESSAGE

The MESSAGE function displays a text string in a message window.

The MESSAGE function has the following syntax:

MESSAGE syntax

MESSAGE (String [, Value1, ...])

When a message statement in the C/AL code executes, the message is not
immediately displayed. Instead, it is displayed after the C/AL code has finished
executing, or after the C/AL code pauses to wait for user interaction.

The message window remains open until the user clicks OK.

Use the following characters for special purposes in the String parameter:

• The backslash character (\) starts a new line.

• The % symbol is a variable placeholder.

 Note: When you use the % symbol, it automatically formats the variable, as if
you called the FORMAT function to convert a variable into string.

The following code example shows how to use the MESSAGE function:

MESSAGE example

ValueDec := 12345.678;

ValueBool := TRUE;

MESSAGE('ValueDec is %1\ValueBool is %2',ValueDec,ValueBool);

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 25

When this code runs, the following result is displayed:

FIGURE 7.5: THE MESSAGE DIALOG BOX

CONFIRM

The CONFIRM function creates a dialog box that prompts the user for a yes or no
answer. The dialog box is centered on the screen.

The CONFIRM function has the following syntax:

CONFIRM syntax

Ok := Dialog.CONFIRM(String [, Default] [, Value1] ,...)

Like the MESSAGE function, CONFIRM also displays a message to the user.
However, CONFIRM requires the user to answer a question by clicking Yes or No
and returns a Boolean value (TRUE or FALSE), that corresponds to the user's
selection. The CONFIRM function runs modally, and the application waits for the
user's response before continuing the code execution.

The CONFIRM function frequently is used to confirm that the user wants to
continue with a process. For example, Microsoft Dynamics NAV 2013 uses
CONFIRM functions before posting records. The user is given an opportunity to
stop the posting process or to continue.

The Default parameter specifies the default button in the message window. If it is
FALSE, the No button is set as the active button. If the user only presses ENTER,
the function returns FALSE. If the Default parameter is TRUE, the Yes button is set
as the default button instead, and pressing ENTER returns TRUE.

 Note: You can also use the % placeholders with CONFIRM. However, you
must remember to include the Default Boolean parameter before listing the
variables that replace the placeholders.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 26

The following code example shows how to use the CONFIRM function:

CONFIRM example

IF NOT CONFIRM('Do you want to delete the
%1?',FALSE,Customer.TABLECAPTION) THEN

 EXIT;

Customer.DELETE;

When this code runs, the result is as follows:

FIGURE 7.6: THE CONFIRM DIALOG BOX

The CONFIRM function responses are limited to Yes and No. If other responses are
needed, use the STRMENU function.

STRMENU

The STRMENU function creates a menu window that displays a series of options
from a comma-delimited string.

The STRMENU function has the following syntax:

STRMENU syntax

OptionNumber := STRMENU(OptionString [, DefaultNumber] [, Instruction])

STRMENU returns an integer value that represents the user's selection. The first
choice is 1, the second choice is 2, and so on. If the user clicks Cancel or presses
ESC, then STRMENU returns 0.

If the DefaultNumber parameter is not set, the first option in automatically
selected, with a value of one.

The following code sample shows how to use the STRMENU function:

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 27

STRMENU example

Days := 'Monday,Tuesday,Wednesday,Thursday,Friday';

Selection := STRMENU(Days,1,'Which day is today?');

When this code runs, the result is as follows:

FIGURE 7.7: THE STRMENU DIALOG BOX

ERROR

The ERROR function displays an error message and ends the execution of C/AL
code.

The ERROR function has the following syntax:

ERROR syntax

ERROR(String [, Value1, …])

The ERROR function raises an error condition and leaves the current process, and
cancels the entire process, not just the function. If the code is in a database
transaction, the transaction stops and all uncommitted data roll back. The ERROR
function displays an error message to the user. This message informs the user that
additional processing is not allowed. The String parameter specifies this error
message.

The following example demonstrates the ERROR function:

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 28

ERROR example

Number := -1;
IF Number <= 0 THEN BEGIN
 ERROR('Number must be positive. Current value: %1.', Number);
 MESSAGE('This Message is never displayed');
END;

When this code runs, the result is as follows:

FIGURE 7.8: THE ERROR DIALOG BOX

Other Common C/AL Functions
In addition to data access and manipulation, C/AL language simplifies many other
programming tasks. You frequently must manipulate strings, numbers, dates or
times, or access some system functions, such as retrieving the current date or time,
or looking up the current company name.

This lesson presents the most common functions in the following groups:

• String functions

• Date functions

• Number functions

• Array functions

• Stream functions

• System functions

• Other functions

 Note: There are additional function groups, and most of these groups contain
more functions than presented in this lesson. To perform tasks in Microsoft
Dynamics NAV Development Environment you only have to know the most
common functions. If you want to know more, you can find more information about
these and other functions in Microsoft Dynamics NAV Developer and IT Pro Help.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 29

String Functions

Manipulating strings is one of the more common programming tasks. You
frequently must do any of the following tasks:

• Find an index of a substring within another string.

• Check the length of a string.

• Take a substring from a string.

There are several built-in C/AL functions that let you manipulate strings.

The following table lists the most common string manipulation functions, and
explains their usage.

Function Syntax Remarks

STRPOS Position :=
STRPOS(String,SubString)

Searches for the first
occurrence of a substring in a
string. It returns the position
of the first character of the
substring within the string. If
the substring is not found
within the string, the
function returns a zero. As
with all string functions, the
STRPOS function is case-
sensitive.

COPYSTR NewString :=
COPYSTR(String, Position [,
Length])

Copies a substring of any
length from a specific
position in a string to a new
string.
If you omit the Length
parameter, the result
includes all characters from
Position to the end of the
string.

STRLEN Length := STRLEN(String) Returns an integer that is the
length of the string in the
parameter.

MAXSTRLEN MaxLength :=
MAXSTLEN(String)

Returns the maximum
defined length of a string
variable. You define the
length when you declare a
variable, or create a field in
the table.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 30

Function Syntax Remarks

LOWERCASE NewString :=
LOWERCASE(String)

Converts all letters in a string
to lowercase.

UPPERCASE NewString :=
UPPERCASE(String)

Converts all letters in a string
to uppercase.

INCSTR NewString := INCSTR(String) Increases a positive number
or decreases a negative
number inside a string by
one.
If String contains more than
one number, then only the
last number is changed. For
example, 'SINV-13-3901' is
changed to 'SINV-13-3902'.

SELECTSTR NewString :=
SELECTSTR(Number,
CommaString)

Retrieves a substring from a
comma-separated string. The
substrings are numbered
starting with one.

 Note: You can call all these functions on variables and fields both of type Text
and Code.

Date Functions

In a business application, such as Microsoft Dynamics NAV 2013, manipulating
dates is a common programming task. The C/AL language provides several useful
functions that modify or otherwise operate on date values.

The following table summarizes the most common date functions:

Function Syntax Remarks

DATE2DMY Number :=
DATE2DMY(Date, What)

Retrieves the day, month, or
year of a given date. The
What parameter specifies
which part of the date that
you want to retrieve. It
accepts the following values:
• 1 for day

• 2 for month

• 3 for year

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 31

Function Syntax Remarks

DATE2DWY Number :=
DATE2DWY(Date, What)

Retrieves the day of the week,
week number, or year of a
given date. The What
parameter specifies which part
of the date that you want to
retrieve. It accepts the
following values:
• 1 for the day of the week

(1 for Monday, 2 for
Tuesday, and so on)

• 2 for the week number in
a year

• 3 for year

CALCDATE NewDate :=
CALCDATE(DateExpression
[, Date])

Calculates a new date that is
based on a date expression
and a reference date. If you
omit the optional Date
parameter, the calculation is
based on current system date.
DateExpression can be of text,
code, or DateFormula data
type.
For example, to calculate the
first day of the next month,
use the following code:

CALCDATE example

NewDate :=
CALCDATE('<CM+1D>')

 Note: To learn more
about date formulas, contact
the Microsoft Dynamics NAV
Developer and IT Pro Help.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 32

Function Syntax Remarks

NORMALDATE NormalDate :=
NORMALDATE(Date)

Gets the regular date (instead
of the closing date) for the
specified date. You typically
call the NORMALDATE
function from posting
routines to make sure that the
user does not enter a closing
date where a posting date is
required. For example, a
posting date on a sales invoice
must not be a closing date.

CLOSINGDATE ClosingDate :=
CLOSINGDATE(Date)

Gets the closing date for the
specified date. A closing date
is a time following the given
date but before the next
regular date. Closing dates are
sorted immediately after the
corresponding regular date,
but before the next regular
date.

Numeric Functions

There are several numeric functions that simplify certain operations with numbers,
such as rounding.

The following table lists the numeric functions in C/AL:

Function Syntax Remarks

ROUND Rounds the value of a
numeric variable to a
specified precision and in a
specified direction. The
Direction parameter can take
the following values:
• '=' rounds up or down to

the nearest value. Values
of 5 or more are rounded
up. Values less than 5 are
rounded down.

• '>' rounds up.

• '<' rounds down.

If you omit the optional
Direction parameter, then the

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 33

Function Syntax Remarks
value is rounded to the
nearest value.
If you omit the Precision
parameter, then the following
steps determine the precision:
1. The function

ReadRounding in
Codeunit 1, Application
Management, is called.
ReadRounding returns a
decimal value that is the
precision. By default, the
ReadRounding function
returns the Amount
Rounding Precision field
from the General Ledger
Setup table.

2. If you have customized
Codeunit 1 and it does
not implement the
ReadRounding function,
then the No. of digits
after decimal in the
Regional and Language
Options on the current
computer is used to
specify the precision. If
the No. of digits after
decimal does not specify
a valid value, then the
precision is specified as
two digits after the
decimal.

ABS NewNumber :=
ABS(Number)

Calculates the absolute value
of a number (Decimal, Integer
or BigInteger). ABS always
returns a positive numeric
value or zero.

POWER NewNumber :=
POWER(Number, Power)

Raises a number to a power.
For example, you can use this
function to square the
number 2 to obtain the result
of 4.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 34

Function Syntax Remarks

RANDOM Number :=
RANDOM(MaxNumber)

Returns a pseudo-random
number, between 1 and the
value that is specified in the
MaxNumber parameter. The
number is pseudo-random,
because it is always selected
from the same sequence of
numbers. To randomize the
sequence, call the
RANDOMIZE function.

RANDOMIZE RANDOMIZE([Seed]) Generates a sequence of
random numbers from which
the RANDOM function
selects random numbers. If
you use the same number as
the Seed parameter, the same
set of numbers is generated. If
you omit the Seed parameter,
the total number of
milliseconds since midnight is
used. This guarantees
unpredictable results.

Array Functions

In C/AL, you can declare an array of any data type. To help you manipulate the
data in the array, C/AL provides several functions.

The following table lists the array functions:

Function Syntax Remarks

ARRAYLEN Length := ARRAYLEN(Array[,
Dimension])

Returns the total number
of elements in an array or
the number of elements in
a specific dimension.
If you omit the optional
Dimension parameter,
then the return value
represents the total
number of elements in the
whole array.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 35

Function Syntax Remarks

COMPRESSARRAY [Count =:]
COMPRESSARRAY(StringArray)

Moves all non-empty
strings (text) in an array to
the beginning of the array.
The resulting StringArray
has the same number of
elements as the input
array, but empty entries
and entries that contain
only blanks are displayed
at the end of the array.

The COMPRESSARRAY
function only supports
one-dimensional arrays.
You cannot use this
function together with
multidimensional arrays.

COPYARRAY COPYARRAY(NewArray, Array,
Position[, Length])

Copies one or more
elements from an array to
a new array. The Position
parameter specifies the
position of the first array
element to copy, whereas
the optional Length
parameter specifies the
number of array elements
to copy. If you omit the
Length parameter,
COPYARRAY copies all
array elements from
Position to the last
element. The
COPYARRAY function
only supports one-
dimensional arrays. You
can call it repeatedly to
copy more dimensions.

 Note: You cannot
copy arrays of complex
data types.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 36

Stream Functions

Streaming is an important concept in programming languages. In C/AL it lets you
access binary data that is stored in objects such as files or BLOB fields, without
consideration of the actual representation, capabilities, or limitations of the object
in which the data is actually stored. In addition to accessing data in files or BLOBs,
C/AL lets you stream data directly from NAV and into NAV by using XMLports,
and to exchange streams with .NET Framework objects through DotNet variables.

C/AL supports the following two data types for handling streams:

• InStream to read data from an object, such as a file or a BLOB.

• OutStream to write data to an object, such as a file or a BLOB.

The following table lists the C/AL functions that you use to manipulate streams:

Function Syntax Remarks

CREATEINSTREAM File.CreateInStream(Stream)
Blob.CreateInStream(Stream)

Creates an InStream
object for data reading
from a file or a BLOB.

CREATEOUTSTREA
M

File.CreateOutStream(Stream)
Blob.CreateOutStream(Stream
)

Creates an OutStream
object for data writing to
a file or a BLOB.

READ [Read :=]
InStream.Read(Variable[,
Length])

Reads a specified
number of bytes from an
InStream object. Data is
read in binary format.
Variables can be any
data type. However, the
data and the length
must match the storage
capacity of the variable.
If the Length differs from
the size of Variable, a
run-time error occurs.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 37

Function Syntax Remarks

READTEXT [Read :=]
InStream.ReadText(Text[,
Length])

Reads text from an
InStream object into a
string variable. Text must
be of a string data type,
and the length must be
shorter than, or equal to
the maximum length of
the Text variable. If you
try to read more than
the maximum length of
the Text variable, a run-
time error occurs.

WRITE [Written :=]
OutStream.Write(Variable[,
Length])

Writes a specified
number of bytes from
the Variable to the
stream. Data is written in
binary format.

For variables other than
text, code, and binary, if
you specify length that
differs from the size of
the variable, a run-time
error occurs.

WRITETEXT [Written :=]
OutStream.WriteText([Text[,
Length]])

Writes text to an
OutStream object. If you
omit the Text parameter,
then an Enter and a line
feed character are
written.

EOS IsEOS := InStream.EOS Indicates whether an
input stream has
reached End of Stream
(EOS).

 Note: Reading
past the end of stream
results in a run-time
error.

COPYSTREAM [Ok :=]
COPYSTREAM(OutStream,
InStream)

Copies all the data from
an InStream to an
OutStream.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 38

 Note: Modules 9 XMLports, and 11 .NET Interoperability cover streaming in
more detail.

System Functions

From C/AL code, you frequently must access information about the operating
system, the environment, or the current context of Microsoft Dynamics NAV 2013.
C/AL provides several system functions that provide such information. System
functions do not require any parameters because they return information that is
stored in the system.

The following table shows the most important system functions:

Function Remarks

USERID Gets the ID of the currently logged-on user.

COMPANYNAME Gets the current company name.

TODAY Gets the current operating system date. You
can only use the TODAY function to retrieve
the current date from the operating system.
You cannot use it to set the date in the
operating system.

 Note: Make sure not to use the
TODAY function for setting defaults for dates
that are relevant in financial transactions.
Use WORKDATE instead.

TIME Gets the current operating system time.

WORKDATE Gets and sets the work date for the current
session. Every user can set the work date for
their session.

 Best Practice: Even though it is
possible, the best practice is not to change
the work date from code. You should let users
control their work dates, and the code should
not interfere with users’ choice.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 39

Function Remarks

TEMPORARYPATH Gets the path of the directory where the
temporary file for Microsoft Dynamics NAV is
stored. If you intend to create any temporary
files, then you should consider storing them
in the directory that is returned by this
function.

GUIALLOWED Checks whether the C/AL code can display
any information on the screen. If the code is
running under Web services, or in a NAV
Application Server (NAS) session, then
GUIALLOWED returns FALSE. If the code is
running under the RoleTailored client, then
GUIALLOWED returns TRUE.

GLOBALLANGUAGE Gets and sets the current global language
setting. You can use this function to check the
current language of the user session, or to
change the language to any of the supported
languages. The global language is
represented by an integer value that
corresponds to standard Windows language
ID.

Other Functions

There are some other useful C/AL functions which help you manipulate the
variables, convert between string and other simple data types, or manipulate the
flow of code execution.

The following table shows these functions:

Function Syntax Remarks

EXIT EXIT(Value) Leaves the current function
or trigger immediately. If
there is a parent function
that calls this current
function or trigger, the Value
parameter of the EXIT
function is returned to the
calling function. The EXIT
function causes no error
condition nor does it roll
back any data.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 40

Function Syntax Remarks

CLEAR CLEAR(Variable) Clears the value of a single
variable. For simple data
types, CLEAR resets the value
to the default value for the
variable data type. For
complex data types, it resets
the variable to its previous
state before it first was
accessed by the code.
For example, for the record
variables, CLEAR clears all
the filters that were set,
resets all the fields to their
initial value (including the
primary key fields), and resets
the current key to the
primary key.

CLEARALL CLEARALL Clears all user-defined
variables in scope of the
trigger from which
CLEARALL is called.
CLEARALL does not clear the
Rec and xRec variables.
CLEARALL works by calling
the CLEAR function
repeatedly on each variable.

EVALUATE [Ok :=] EVALUATE(Variable,
String[, Number])

Converts the String
parameter into the actual
data type of the Variable
parameter, and stores the
converted value in Variable.
It returns a Boolean value
that indicates whether the
conversion was successful. If
you do not inspect the return
value and EVALUATE fails,
then a run-time error occurs.

FORMAT String := FORMAT(Value[,
Length][,
FormatStr/FormatNumber])

Formats a value into a string.
You may specify the desired
length of the resulting string.
For numeric, date, and time
values, you can also select
the format into which the
value is translated.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 41

Create Custom Functions
Creating custom functions makes code more efficient. Creating functions includes
adding, removing, or editing code once in a function that is used several times in
an application. The change then is applied every time the function is called.

Reasons to Create Custom Functions

Reasons to create custom functions include the following:

• To organize the program. A function is to code what headings are
to a well-organized document. Functions make programs easier to
follow for you and other developers who may have to modify the
code later.

• To make code self-explanatory. When you extract a segment of
code to a function, and assign a meaningful name to the function,
your code becomes easier to understand.

• To simplify the development process. When you design a program,
you can break a complex problem into multiple smaller tasks. Each of
these tasks can become a function in the program, and you can build
the whole program from these smaller tasks. If a function is too
complex, you can break it apart into smaller tasks and create a new
function for each task.

• To make code reusable and reduce work. If the same or very
similar things are performed in two separate parts of a program,
consider creating a function to do that task. Instead of writing the
same code in two or three locations, write it in one location and call it
from other locations.

• To reduce the possibility of errors. You can thoroughly test a single
function by calling it with all possible or likely combinations of
parameters. When you are searching for errors, you can reduce the
search. If an error is found in a function, you can fix it in one place
and it is automatically fixed in all locations that called that function. If
you had to fix the same code in different locations, you might forget
one or add another bug.

• To make modifications easier. If you have to modify the way a
program works and there is a similar code in many locations, the
modifications must be made to each of those locations. If you put the
common code in a function, you change one location and every other
location that uses that function uses the updated code. This reduces
work and reduces the possibility of introducing more errors.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 42

• To isolate data. When a function performs a task, it can have its own
local data that cannot be tampered with by other functions in the
same object. By using its own local data, a function does not tamper
with data that is owned by other functions. If many functions use the
same global variables, this data can become corrupted.

• To reduce the size of the objects. Although it is a minor
consideration, this is worthwhile when you try to locate something in
the code.

There are many reasons to create functions. When you design code for an object,
the first task is to determine major tasks and then create, or define, a function for
each one. When you organize similar tasks in different locations, consider adding
another function to handle such tasks.

Another reason to create functions that is specific to C/SIDE is that functions are
one of the main ways to communicate between objects. Objects cannot make
variables available to other objects. However, they can expose functions which
access those variables.

Local Functions, Variables and the EXIT Statement
Some functions and variables have a limited scope. They can be used only in the
location where they are defined.

Local Function

A local function can only be called from inside the object in which it is defined.
When you define new functions, by default they are not local. They can be called
both from inside the object in which they are defined, and from other objects.

Local Variable

A local variable is a variable with the scope limited to a single trigger. This means
that code in a particular function can access a local variable and use it like any
other variable. However, the code in other functions in the object cannot access it.
If the name of a local variable is referred to outside the function in which it is
declared, a compile-time error occurs. The formal parameters of a function are
also treated as local variables in that function.

 Note: To define local variables, click View > C/AL Locals.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 43

The EXIT Statement

Use the EXIT statement to stop the execution of a trigger or a function. In
functions, you use the EXIT statement to return a value from the function.

When you use a function call in an expression, the function must return a value.
When you write a function that has a return value, use the EXIT statement to
signal to the system to return a value.

The EXIT statement has the following syntax:

EXIT syntax

EXIT(<expression>)

For example, create a function named Square to square a value.

The following expression results in the Answer variable being assigned the value
29.

EXIT example

Answer := 4 + Square(5);

If the formal parameter is named Param, you can write the Square function
trigger code as follows:

Square Function

EXIT(Param * Param);

 Note: Instead of using EXIT, you can give a name to the return parameter. If
you do this, then you can assign the return value to the return parameter. The
function exists with the value that was last assigned to the return parameter.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 44

Lab 7.1: Create Custom Functions
Scenario

Viktor is a business systems developer for Cronus International Ltd. He is learning
how to develop customizations for Microsoft Dynamics NAV 2013, and how to
program in C/AL to customize solutions for his customers.

He wants to customize the Customer Card page by adding an action that adjusts
a customer’s credit limit based on the customer’s previous sales history, or to reset
the limit to zero if there were no transactions.

The requirements state the following:

• A customer’s credit limit may not exceed 50% of total sales revenue
for the customer in the past twelve months.

• Customer’s credit limit must always be rounded to the nearest 10,000.

• If the credit limit is rounded during the process, the application must
send notification to the user.

• If the new credit limit does not differ from the old one, the
application must send notification to the user.

• If the customer has no sales history over the past twelve months, the
credit limit must be reset to zero.

• The function that sets the credit limit must be available to other
objects.

• The Customer Card page must include an action that calls the
function.

• If the function is called from the page action, and credit limit would
be increased, the function must ask the user for confirmation before
actually updating the credit limit.

Objectives

The objectives are:

• Create local and global functions.

• Create a page action that calls a function.

• Pass parameters by reference and by value.

• Use ROUND, SETRANGE, CALCFIELDS, CALCDATE, WORKDATE,
CONFIRM, VALIDATE, FIELDCAPTION and MODIFY functions.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 45

Exercise 1: Create Functions
Exercise Scenario

Viktor starts by analyzing the requirements. One requirement states that the
function that updates the credit limit must be available to other objects. This
indicates a global function. The best practice in Microsoft Dynamics NAV is never
to store business logic in page objects. Therefore, this function must be located in
another object that is available by the page and any other object. Because the
function handles business logic about how to change a specific entity (Customer),
the best location to put the global function that updates the credit limit for a
customer is table 18, Customer.

However, another requirement states that if the user calls this function from a
page action, the application first should ask for confirmation. This indicates two
additional functions:

• One global function on table Customer that calculates the new credit
limit.

• One local function on page Customer Card that should call other
functions and ask for confirmation.

Therefore, Viktor creates three functions to perform the following tasks:

• Calculate the new credit limit.

• Update the credit limit.

• Handle the confirmation message.

Task 1: Add Global Functions to Customer Table

High Level Steps
1. Add a global function to table 18, Customer, and name it

UpdateCreditLimit.
2. Modify the UpdateCreditLimit function so that it receives a

parameter named NewCreditLimit, of type Decimal, by reference.
3. Add another global function to table 18, Customer, and name it

CalculateCreditLimit.
4. Modify the CalculateCreditLimit function to return a value of type

Decimal.
5. Compile and save the table 18, Customer.

Detailed Steps
1. Add a global function to table 18, Customer, and name it

UpdateCreditLimit.
a. In Object Designer, click Table.
b. Select table 18, Customer, and then click Design.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 46

c. Click View > C/AL Globals to open the C/AL Globals window.
d. On the Functions tab, in the first blank line, enter

“UpdateCreditLimit”.
e. Do not close the C/AL Globals window.

2. Modify the UpdateCreditLimit function so that it receives a

parameter named NewCreditLimit, of type Decimal, by reference.
a. Make sure that the UpdateCreditLimit function is selected on

the Functions tab of the C/AL Globals window.
b. Click Locals to open the C/AL Locals window.

c. On the Parameters tab, in the first line of the Name column,
enter “NewCreditLimit”.

d. In the DataType column, enter Decimal, and then select the Var
check box.

e. Close the C/AL Locals window.
f. Do not close the C/AL Globals window.

3. Add another global function to table 18, Customer, and name it

CalculateCreditLimit.
a. In the C/AL Globals window, on the Functions tab, in the first

blank line enter “CalculateCreditLimit”.

b. Do not close the C/AL Globals window.

4. Modify the CalculateCreditLimit function to return a value of type
Decimal.
a. Make sure that CalculateCreditLimit is selected on the

Functions tab of the C/AL Globals window.
b. Click Locals to open the C/AL Locals window.
c. On the Return Value tab, in the Return Type field, enter

Decimal.
d. Close the C/AL Locals window.
e. Close the C/AL Globals window.

5. Compile and save the table 18, Customer.
a. Click File > Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected.
c. Click OK.
d. Close the Table Designer for table 18, Customer.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 47

Task 2: Add a Local Function to Customer Card Page

High Level Steps
1. Add a local function to page 21, Customer Card, and name it

CallUpdateCreditLimit.
2. Compile, save, and close page 21, Customer Card.

Detailed Steps
1. Add a local function to page 21, Customer Card, and name it

CallUpdateCreditLimit.
a. In Object Designer, click Page.
b. Select page 21, Customer Card and then click Design.
c. Click View > C/AL Globals.

d. On the Functions tab, in the first empty line, enter
“CallUpdateCreditLimit”.

e. Make sure that the CallUpdateCreditLimit function is selected,
and click View > Properties.

f. In the Local property, enter Yes.
g. Close the Properties window.

2. Compile, save, and close page 21, Customer Card.

a. Click File > Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected.
c. Click OK.

d. Close the Page Designer for page 21, Customer Card.

Results

Customized objects:

Table 18, Customer

Page 21, Customer Card

Exercise 2: Add Action to Page
Exercise Scenario

Now that all required functions are in place, Viktor is ready to customize the
Customer Card page to include an action that calculates the credit limit. He adds
a new action to the ActionItems action container and to the Functions action
group. He also promotes the action to the Process group of the Home tab, and
assigns an image to it.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 48

Task 1: Add an Action to Customer Card Page

High Level Steps
1. Add an action to the Function action group of ActionItems action

container. Set its caption to Update Credit Limit and its name to
UpdateCreditLimit.

2. Make the Update Credit Limit action call the
CallUpdateCreditLimit function.

3. Set properties on the Update Credit Limit action to promote it to
the Process category as a big action.

4. Set a property on the Update Credit Limit action to show the
CalculateCost image.

5. Compile, save, and close page 21, Customer Card.

Detailed Steps
1. Add an action to the Function action group of ActionItems action

container. Set its caption to Update Credit Limit and its name to
UpdateCreditLimit.
a. In Object Designer, click Page.
b. Select page 21, Customer Card, and then click Design.
c. Click View > Page Actions.

d. In the Action Designer window, locate and select the first action
in the Functions action group of the ActionItems action
container. It should be ApplyTemplates.

e. Click Edit > New.

f. In the Caption column, enter “Update Credit Limit”, and then in
the Name column enter “UpdateCreditLimit”.

2. Make the Update Credit Limit action call the
CallUpdateCreditLimit function.
a. In Action Designer, make sure that Update Credit Limit action

is selected.

b. Click View > C/AL Code.
c. In the UpdateCreditLimit - OnAction trigger, type the following

code:

CallUpdateCreditLimit;

d. Close the C/AL Editor window.

3. Set properties on the Update Credit Limit action to promote it to
the Process category as a big action.

a. In the Action Designer, make sure that the Update Credit Limit
action is selected.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 49

b. Click View > Properties.
c. Set Promoted to Yes.

d. Set PromotedCategory to Process.
e. Set PromotedIsBig to Yes.
f. Do not close the Properties window.

4. Set a property on the Update Credit Limit action to show the
CalculateCost image.
a. In the Image property, click the Lookup button to open the

Image List window.

b. In the Image List window, select the CalculateCost line.
c. Click OK.
d. Close the Properties window.
e. Close the Action Designer window.

5. Compile, save, and close page 21, Customer Card.

a. Click File > Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected.
c. Click OK.
d. Close the Page Designer for page 21, Customer Card.

Results

Customized object:

Page 21, Customer Card

Exercise 3: Add Code to Functions
Exercise Scenario

Viktor adds code to functions, to complete the customization. He changes the
CalculateCreditLimit function in table 18 (Customer) to perform the calculation
according to the requirements. He then changes the UpdateCreditLimit function
in table 18, Customer, to update the credit limit. Finally, Viktor adds code to the
CallUpdateCreditLimit, to call the CalculateCreditLimit function, and ask for
confirmation.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 50

Task 1: Add Code to CalculateCreditLimit Function

High Level Steps
1. In table 18, Customer, in the CalculateCreditLimit function, declare

a local variable named Cust, of type Record 18, Customer.
2. Add code to the CalculateCreditLimit function, that calculates the

Sales (LCY) field for the past twelve months.

Detailed Steps
1. In table 18, Customer, in the CalculateCreditLimit function, declare

a local variable named Cust, of type Record 18, Customer.
a. In Object Designer, click Table.
b. Select table 18, Customer, and then click Design.

c. Click View > C/AL Globals.
d. In the C/AL Globals window, on the Functions tab, select the

CalculateCreditLimit function, and then click Locals.
e. In the C/AL Locals window, on the Variables tab, in the Name

column, enter “Cust” in the DataType column enter Record, and
in the SubType column, enter Customer.

f. Close the C/AL Locals window.

2. Add code to the CalculateCreditLimit function, that calculates the
Sales (LCY) field for the past twelve months.
a. In the C/AL Globals window, on the Functions tab, right-click

the CalculateCreditLimit function.

b. In the pop-up menu, click Go To Definition.
c. In the CalculateCreditLimit function body, enter the following

code:

Cust := Rec;

Cust.SETRANGE("Date Filter",CALCDATE('<-12M>',WORKDATE),WORKDATE);

Cust.CALCFIELDS("Sales (LCY)","Balance (LCY)");

EXIT(ROUND(Cust."Sales (LCY)" * 0.5));

d. Close the C/AL Editor.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 51

Task 2: Add Code to UpdateCreditLimit Function

High Level Steps
1. Add code to UpdateCreditLimit function, to round the

NewCreditLimit formal parameter to the nearest 10,000, to validate
the value of NewCreditLimit into the Credit Limit (LCY) field, and to
modify the record.

2. Compile, save, and close the table 18, Customer.

Detailed Steps
1. Add code to UpdateCreditLimit function, to round the

NewCreditLimit formal parameter to the nearest 10,000, to validate
the value of NewCreditLimit into the Credit Limit (LCY) field, and to
modify the record.
a. On the View menu, click C/AL Globals.
b. On the Functions tab, right-click the UpdateCreditLimit

function.

c. In the pop-up menu, click Go To Definition.
d. In the body of the UpdateCreditLimit function, enter the

following code:

NewCreditLimit := ROUND(NewCreditLimit,10000);

Rec.VALIDATE("Credit Limit (LCY)",NewCreditLimit);

Rec.MODIFY;

e. Close the C/AL Editor.

2. Compile, save, and close the table 18, Customer.
a. Click File > Save.
b. In the Save dialog box, make sure that the Compiled check box

is selected.
c. Click OK.
d. Close the Table Designer window for table 18, Customer.

Task 3: Add Code to CallUpdateCreditLlimit Function

High Level Steps
1. Add three global text constants to the page 21, Customer Card, with

the text for:
o Confirmation message

o Information about the rounded credit limit

o Information about an up-to-date credit limit.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 52

2. Add two local decimal variables to the CallUpdateCreditLimit

function, and call them CreditLimitCalculated and CreditLimitActual.
3. Add the code that calculates the new credit limit.
4. Add the code that checks if the credit limit is up to date. If it is, the

code informs the user, and exits the function.

5. Add code that asks the user for confirmation of the credit limit
update, and leaves the function if the user declines the confirmation.

6. Add code that updates the credit limit, and then informs the user if
the rounding has occurred.

7. Compile, save, and close the page 21, Customer Card.

Detailed Steps
1. Add three global text constants to the page 21, Customer Card, with

the text for:
 Confirmation message.

 Information about the rounded credit limit.

 Information about an up-to-date credit limit.

a. In Object Designer, click Page.
b. Select page 21, Customer Card, and then click Design.

c. Click View > C/AL Globals.
d. On the Text Constants tab, enter the following three constants:

Name ConstValue

Text90001 Are you sure that you want to set the %1 to %2?

Text90002 The credit limit was rounded to %1 to comply with
company policies.

Text90003 The credit limit is up to date.

2. Add two local decimal variables to the CallUpdateCreditLimit

function, and call them CreditLimitCalculated and CreditLimitActual.
a. On the Functions tab, select the CallUpdateCreditLimit

function, and then click Locals.
b. In the C/AL Locals window, on the Variables tab, enter the

following variables:

Name DataType

CreditLimitCalculated Decimal

CreditLimitActual Decimal

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 53

3. Add the code that calculates the new credit limit.
a. On the Functions tab, right-click the CallUpdateCreditLimit

function.
b. On the pop-up menu, click Go To Definition.
c. In the body of the CallUpdateCreditLimit function, enter the

following code:

CreditLimitCalculated := Rec.CalculateCreditLimit;

4. Add the code that checks if the credit limit is up to date. If it is, the
code informs the user, and exits the function.
a. In the body of the CallUpdateCreditLimit function, append the

following code:

IF CreditLimitCalculated = Rec."Credit Limit (LCY)" THEN BEGIN

 MESSAGE(Text90003);

 EXIT;

END;

5. Add code that asks the user for confirmation of the credit limit
update, and leaves the function if the user declines the confirmation.
a. In the body of the CallUpdateCreditLimit function, append the

following code:

IF GUIALLOWED AND NOT CONFIRM(

 Text90001,

 FALSE,

 FIELDCAPTION("Credit Limit (LCY)"),

 CreditLimitCalculated)

THEN

 EXIT;

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 54

6. Add code that updates the credit limit, and then informs the user if
the rounding has occurred.

a. In the body of the CallUpdateCreditLimit function, append the
following code:

CreditLimitActual := CreditLimitCalculated;

Rec.UpdateCreditLimit(CreditLimitActual);

IF CreditLimitActual <> CreditLimitCalculated THEN

 MESSAGE(Text90002,CreditLimitActual);

The final version of the code in the CallUpdateCreditLimit function should be
this:

CallUpdateCreditLimit Function

CreditLimitCalculated := Rec.CalculateCreditLimit;

IF CreditLimitCalculated = Rec."Credit Limit (LCY)" THEN BEGIN

 MESSAGE(Text90003);

 EXIT;

END;

IF GUIALLOWED AND NOT CONFIRM(

 Text90001,

 FALSE,

 FIELDCAPTION("Credit Limit (LCY)"),

 CreditLimitCalculated)

THEN

 EXIT;

CreditLimitActual := CreditLimitCalculated;

Rec.UpdateCreditLimit(CreditLimitActual);

IF CreditLimitActual <> CreditLimitCalculated THEN

 MESSAGE(Text90002,CreditLimitActual);

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 55

7. Compile, save, and close the page 21, Customer Card.
a. Click File > Save.

b. In the Save dialog box, make sure that the Compiled check box
is selected.

c. Click OK.
d. Close the Page Designer for page 21, Customer Card.

Task 4: Test the Page

High Level Steps
1. In the client for Windows, open the Customer Card page for

customer 30000, John Haddock Insurance Co.
2. Click the Update Credit Limit action to verify its functionality.

Detailed Steps
1. In the client for Windows, open the Customer Card page for

customer 30000, John Haddock Insurance Co.
a. Start the Microsoft Dynamics NAV client for Windows.

b. In the Search box, enter “Customers” and press ENTER.
c. Double-click the customer 30000, John Haddock Insurance Co.

The following figure shows the Customer Card page after customization, with the
Update Credit Limit action promoted:

FIGURE 7.9: THE CUSTOMIZED CUSTOMER CARD PAGE

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 56

2. Click the Update Credit Limit action to verify its functionality.

a. In the customer card, click the Update Credit Limit action.

The application asks for confirmation and displays the following dialog box:

FIGURE 7.10: CREDIT LIMIT CONFIRMATION DIALOG

b. Confirm the question in the dialog box.

The application informs the user that rounding has occurred:

FIGURE 7.11: MESSAGE DIALOG

c. Click OK.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 57

Module Review
Module Review and Takeaways

C/SIDE provides many built-in functions that you can use in your code. These
built-in functions are predefined with their syntax. C/SIDE also lets developers
create custom functions to extend their application.

Understanding the concepts of functions, when to use built-in functions, and
when to create custom functions helps developers efficiently develop custom
solutions for Microsoft Dynamics NAV 2013.

Test Your Knowledge

Test your knowledge with the following questions.

1. How many local variables does the CreateAccountingPeriodFilter function
in codeunit 358, DateFilter-Calc declare?

2. How many parameters does the CreateAccountingDateFilter function in
codeunit 358, DateFilter-Calc have? How many of these are by reference, and
how many are by value?

3. Which function call retrieves only the last record in the filter from the
Customer table?

() Customer.FIND;

() Customer.FINDLAST;

() Customer.FIND(‘+’);

() Customer.FIND(‘>’);

() Customer.FINDSET;

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 58

4. Which function retrieves a record by its primary key values?

5. The MODIFY function returns FALSE or fails if no records were modified?

() True

() False

6. The MODIFYALL function returns FALSE or fails if no records were modified?

() True

() False

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 7: C/AL Functions

7 - 59

Test Your Knowledge Solutions

Module Review and Takeaways

1. How many local variables does the CreateAccountingPeriodFilter function
in codeunit 358, DateFilter-Calc declare?

MODEL ANSWER:

None.

2. How many parameters does the CreateAccountingDateFilter function in
codeunit 358, DateFilter-Calc have? How many of these are by reference, and
how many are by value?

MODEL ANSWER:

5 parameters. 2 are by reference, 3 are by value.

3. Which function call retrieves only the last record in the filter from the
Customer table?

() Customer.FIND;

(√) Customer.FINDLAST;

() Customer.FIND(‘+’);

() Customer.FIND(‘>’);

() Customer.FINDSET;

4. Which function retrieves a record by its primary key values?

MODEL ANSWER:

GET

5. The MODIFY function returns FALSE or fails if no records were modified?

(√) True

() False

6. The MODIFYALL function returns FALSE or fails if no records were modified?

() True

(√) False

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

7 - 60

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

	Module 7: C/AL Functions
	Module Overview
	Objectives

	Functions and Parameters
	Lesson Objectives
	Functions
	Function call in an expression
	Function call statement

	Parameter
	Function call with parameters
	Expression as a parameter

	Pass by Value
	Pass by Reference
	Formal and Actual Parameters
	Code Example
	Calling DELSTR

	Built-in Functions

	Review Built-in Functions
	The C/AL Symbol Menu
	The MESSAGE Function
	Code Example

	The ERROR Function
	Code Example

	The DATE2DMY Function
	Code Example

	Demonstration: Use the DATE2DMY Function
	Demonstration Steps
	Code Example

	Data Access Functions
	GET
	Code Example
	Inspecting the return value of GET

	FIND
	Code Example

	FIND, FINDFIRST, FINDLAST, FINDSET
	NEXT
	Code Example

	Sorting and Filtering Functions
	SETCURRENTKEY
	Code Example

	SETRANGE
	SETRANGE syntax
	SETRANGE example

	SETFILTER
	Code Example
	SETFILTER example
	SETFILTER example with parameters

	GETRANGEMIN and GETRANGEMAX
	GETRANGEMIN and GETRANGEMAX syntax

	Data Manipulation Functions
	INSERT
	INSERT example

	MODIFY
	MODIFY Example

	MODIFYALL
	Code Example

	DELETE
	DELETE example

	DELETEALL
	DELETEALL Example

	Working with Fields
	CALCFIELDS
	Code Example

	SETAUTOCALCFIELDS
	CALCFIELDS and SETAUTOCALCFIELDS comparison

	CALCSUMS
	CALCSUMS example

	FIELDERROR
	FIELDERROR example

	FIELDCAPTION
	FIELDCAPTION example

	INIT
	INIT example

	TESTFIELD
	TESTFIELD Example

	VALIDATE
	VALIDATE example

	User Interaction Functions
	MESSAGE
	MESSAGE syntax
	MESSAGE example

	CONFIRM
	CONFIRM syntax
	CONFIRM example

	STRMENU
	STRMENU syntax
	STRMENU example

	ERROR
	ERROR syntax
	ERROR example

	Other Common C/AL Functions
	String Functions
	Date Functions
	Numeric Functions
	Array Functions
	Stream Functions
	System Functions
	Other Functions

	Create Custom Functions
	Reasons to Create Custom Functions

	Local Functions, Variables and the EXIT Statement
	Local Function
	Local Variable
	The EXIT Statement
	EXIT syntax
	EXIT example
	Square Function

	Lab 7.1: Create Custom Functions
	Scenario
	Objectives
	Exercise 1: Create Functions
	Exercise Scenario
	Task 1: Add Global Functions to Customer Table
	High Level Steps
	Detailed Steps

	Task 2: Add a Local Function to Customer Card Page
	High Level Steps
	Detailed Steps

	Results
	Exercise 2: Add Action to Page
	Exercise Scenario
	Task 1: Add an Action to Customer Card Page
	High Level Steps
	Detailed Steps

	Results
	Exercise 3: Add Code to Functions
	Exercise Scenario
	Task 1: Add Code to CalculateCreditLimit Function
	High Level Steps
	Detailed Steps

	Task 2: Add Code to UpdateCreditLimit Function
	High Level Steps
	Detailed Steps

	Task 3: Add Code to CallUpdateCreditLlimit Function
	High Level Steps
	Detailed Steps
	CallUpdateCreditLimit Function

	Task 4: Test the Page
	High Level Steps
	Detailed Steps

	Module Review
	Module Review and Takeaways
	Test Your Knowledge

	Test Your Knowledge Solutions
	Module Review and Takeaways

