
5 - 1

MODULE 5: ASSIGNMENT STATEMENTS AND
EXPRESSIONS

Module Overview
Assignment statements are among the simplest statements in C/AL. There are
several types of expressions, such as string expressions, numeric expressions,
relational, and logical expressions. Assignment statements and expressions are
among the most common building blocks of the C/AL code.

Understanding assignment statements and expressions help you write effective
C/AL code.

Objectives
• Explain the concepts of assignment, statement, and assignment

statement.

• Describe the syntax of statements and introduce the statement
separator.

• Describe automatic type conversions for string, numeric, and other
data types.

• Use assignment statements and the Symbol Menu.

• Explain the concepts of expressions, terms, and operators.

• Describe the syntax of an expression.

• Describe the string operator.

• Use the string operator.

• Describe the MAXSTRLEN and the COPYSTR functions.

• Use the MAXSTRLEN and the COPYSTR functions in an expression.

• Define numeric expressions, arithmetic operators, and operator
precedence.

• Describe the arithmetic operators, and provide examples.

• Use the arithmetic operators and examine the operator precedence.

• Define relational and logical operators and expressions.

• Describe the use of relational expressions for comparison.

• Describe the use of relational expressions for set inclusion.

• Describe the use of logical expressions.

• Use logical and relational expressions in a page.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 2

Assignment Statements
Assignment statements assign a value to a variable. This means that a variable can
represent different values at different times.

Assignment

Assignment means to set a variable to a value. When a variable has a value, it
keeps that value until another value is assigned to it, or until the current set of
code ends and the system no longer keeps track of the variable. C/AL has several
assignment methods. One of these is the simple assignment statement.

Statement

A statement in programming context is a single complete programming
instruction that is written as code. Think of a statement as a code line, because
you typically write one statement per line. However, one statement may span
several actual lines of the C/AL code, and a single line of code sometimes may
include several statements.

Assignment Statement

The assignment statement is a specific type of statement that specifically assigns a
value to a variable.

The Syntax of Statements
The ability to assign different values to variables is a cornerstone of programming.
Different programming languages have different syntax for assigning values to
variables.

Function Call Statement

Certain function calls, such as the MESSAGE function, can be a statement on their
own. They are known as function call statements.

The syntax of a function call statement is as follows:

Code Example

[return value :=] <Function Call>

The result of a function call varies depending on the function that is called.
Similarly, the syntax of the function call itself varies with the function that is called.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 3

Assignment Statement

The syntax of an assignment statement is almost as easy as the syntax of the
function call statement. The syntax is as follows:

Code Example

<variable> := <expression>

The assignment statement evaluates the expression and assigns the resulting value
to the variable. The terms evaluation and expression are described in upcoming
lessons. For now, use either a constant or another variable on the right side of the
colon equals, as a simple expression.

Assignment Operator

The “colon equals” (:=) is known as the assignment operator. You use it to assign a
value or an expression that evaluates to a value to a variable.

The Statement Separator

A single programming statement may span several code lines; one code line may
consist of multiple statements. Therefore, the C/AL compiler must be able to
detect when one statement ends and another statement begins. The C/AL
compiler recognizes a statement separator as the indicator of a new statement.
The statement separator is the semicolon (;).

The following example shows the syntax of a trigger:

Code Example

[<statement> { ; <statement> }]

Use brackets to indicate that whatever the brackets enclose is optional. It can be
present or not. Braces indicate optional parts. Whatever the braces enclose is
optional and can be repeated zero (0) or more times. In other words, it is optional
for any statements to appear in a trigger. As many statements as necessary can
appear in the trigger, as long as each statement is separated from the other
statements by a semicolon.

A statement must follow a semicolon. If the last statement in a trigger ends with a
semicolon, the C/AL compiler automatically inserts a Null statement after the last
semicolon and before the end of the trigger. A null statement is an expression
statement with the expression missing. Use a null statement when the syntax calls
for a statement but no expression evaluation. It consists of a semicolon. A
semicolon does not signal the end of a statement (it is not a statement
terminator), but instead it signals the beginning of a new statement (it is a

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 4

statement separator). This is an important difference in understanding the syntax
of other statements.

Automatic Type Conversions
Before you can assign a variable to a value, the type of the value must match the
type of the variable. However, within limits, you can automatically convert certain
types in an assignment operation.

String Data Types

You can convert variables of string data types (code and text) automatically from
one to the other. For example, if Description is a variable of type Text, and
CodeNumber is a variable of type Code, the following statement is valid:

Code Example

CodeNumber := Description

The text value in the Description variable is converted into code before it is
assigned to the CodeNumber variable. This means that all lowercase letters are
converted to uppercase, and all leading and trailing spaces are deleted. Therefore,
the value that is assigned to the code variable is of type Code. This conversion
process does not affect the value that is stored in the Description variable.
Variables on the right side of the assignment operator are not changed by the
assignment operation. Only the variable on the left side of the assignment
operator is changed.

 Note: Automatic conversion does have limitations. For example, if the value
of the Description text variable has more characters than the length of the
CodeNumber variable, an error occurs when the program runs and executes this
statement. This type of error is known as a run-time error.

Numeric Data Types

Variables of the numeric data types (integer, decimal, option, and char) can
convert automatically from one to another, with the following several restrictions
as follows:

• A decimal value must be a whole number (without any value after the
decimal separator) to convert to any of the other numeric data types.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 5

• The value must fall within the range of the variable type. For example,
you cannot automatically convert a decimal to an integer unless the
value is between -2,147,483,648 and 2,147,483,647 which is the valid
range for integers. Also, you cannot automatically convert an integer
to a char, unless the value is between 0 and 255.

 Note: The C/AL Compiler does not know if the conversion will succeed at run
time. Therefore, the C/AL compiler always enables you to write code that implies
automatic numeric data-type conversion. However, if either of these is violated
while program is running, a run-time error occurs.

Other Data Types

Variables of string data types and numeric data types can be automatically
converted from one to the other. However, no other variable types can be
automatically converted during assignment operation.

 Note: If you try to write an assignment statement that assigns variables
between incompatible types, such as assigning a Boolean value to a Text variable, a
compile-time error occurs.

Use Assignment Statements and the Symbol Menu
The following demonstrations show how to use the assignment statements on
several data types and introduce the C/AL Symbol Menu.

Demonstration: Create a Simple Assignment Statement

The following demonstration shows how to use a simple assignment statement.

Demonstration Steps

1. Design codeunit 90000, My Codeunit from the Object Designer.
a. In Object Designer, click Codeunit.
b. Select codeunit 90000, My Codeunit, and then click Design.

2. Delete all code in the OnRun trigger.
a. In the OnRun trigger, select all code by positioning the cursor on

the first row, and then pressing CTRL+SHIFT+END.
b. Delete all code, by pressing Del, or F4.

c. Click Yes to confirm the deletion.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 6

3. In the OnRun trigger, enter the code that assigns value of 25 to the
LoopNo variable, and then displays the variable name and value on
screen.
a. In the OnRun trigger, enter the following code:

LoopNo := 25;
MESSAGE('The value of %1 is %2','LoopNo',LoopNo);

4. Compile, save, close, and run the codeunit.
a. Click File > Save.
b. In the Save dialog window, verify that the Compiled check box is

selected, and then click OK.

c. Close the C/AL Editor window.
d. In Object Designer, select codeunit 90000, My Codeunit.
e. Click Run, and then see the results.

Demonstration: Create Multiple Messages

The following demonstration shows how you can assign different types of values
to different types of variables, and how to specify constants of various data type in
C/AL Editor.

Demonstration Steps

1. Design codeunit 90000, My Codeunit from the Object Designer.
a. In Object Designer, click Codeunit.
b. Select codeunit 90000, My Codeunit, and then click Design.

2. In the OnRun trigger, add the code that assigns different values to
different variables according to the data type. The code then displays
the variable names and values.

a. In the OnRun trigger, enter the following code:

LoopNo := -30;
MESSAGE('The value of %1 is %2','LoopNo',LoopNo);
Amount := 27.50;
MESSAGE('The value of %1 is %2','Amount',Amount);
"When Was It" := 093097D;
MESSAGE('The value of %1 is %2','When Was It',"When Was It");
"Code Number" := ' abc 123 x';
MESSAGE('The value of %1 is %2','Code Number',"Code Number");

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 7

3. Compile, save, close, and run the codeunit.
a. Click File > Save.

b. In the Save dialog window, verify that the Compiled check box is
selected, and then click OK.

c. Close the C/AL Editor window.
d. In Object Designer, select codeunit 90000, My Codeunit.
e. Click Run, and then see the results.

 Note: MESSAGE functions do not stop the execution. They store the messages
added to a queue and display them after the processing has completed. Messages
do not interrupt processing. This means that you cannot use messages to give users
feedback on the processing that is in progress. You can use messages only to give
users the processing results.

Demonstration: Use the Symbol Menu

The C/AL Symbol Menu displays variables, functions, and objects that are
defined in the C/AL Globals window. The C/AL menu also provides information
about the syntax and description of the variables, functions, and objects. The
following demonstration shows the C/AL Symbol Menu, and explains how to use
it.

Demonstration Steps

1. Design codeunit 90000, My Codeunit from the Object Designer.
a. In Object Designer, click Codeunit.
b. Select codeunit 90000, My Codeunit, and then click Design.
c. Go to a new line at the end of the code in the OnRun trigger.

2. Open the C/AL Symbol Menu.

a. Do any of the following to open the C/AL Symbol Menu:
 On the View menu, click C/AL Symbol Menu

 Press F5

 Click the C/AL Symbol Menu button on the Toolbar.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 8

FIGURE 5.1: THE C/AL SYMBOL MENU

 Note: The left panel contains a list of all identifiers that are defined by the
developer, and the list of categories of system-provided functions and objects.

3. Use the C/AL Symbol Menu to assign value of TRUE to the YesOrNo
variable.
a. Select the line that says YesOrNo, and then click OK. The C/AL

Symbol Menu closes and the word YesOrNo is displayed in the
code.

b. After YesOrNo, type the following “:= TRUE;”

After you complete the line, it should read as follows:

YesOrNo := TRUE;

4. Use the C/AL Symbol Menu to write a line of code that displays the
name and the value of the YesOrNo variable.
a. On the first empty line, enter the following code:

MESSAGE(‘The value of %1 is %2’,’

b. With the cursor immediately after the single quotation mark,
press F5 again.

c. Verify that YesOrNo is selected in the C/AL Symbol Menu, and
then click OK.

d. Type a single quotation mark (') and a comma (,).

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 9

e. Press F5 again, and then press ENTER. This is the same as clicking

OK on the C/AL Symbol Menu.
f. Type a closing parenthesis ()) and a semicolon (;). The result is as

follows:

YesOrNo := TRUE;

MESSAGE(‘The value of %1 is %2’,’YesOrNo’,YesOrNo);

5. Use the C/AL Symbol Menu to write code that assigns a value to the
Description field, and displays it on screen.
a. Use the same method for Description, but set the value (located

after the Assignment Operator) to 'Now is the time.' The result is
as follows:

Description := ‘Now is the time. ‘;

MESSAGE(‘The value of %1 is %2’,

‘Description’,Description);

6. Use the C/AL Symbol menu to assign a value to the “What Time”
time variable. It then displays it on screen.
a. Again, use the C/AL Symbol Menu to enter another two lines

that sett and display the "What Time" variable. Set its value to
153000T.

 Note: By using the Symbol Menu, the double quotation marks are
automatically inserted when it is necessary. In this case, the double quotation marks
inside the single quotation marks are not needed. Therefore, go back and remove
them.

The result is as follows:

Code Example

“What Time” := 153000T;

MESSAGE(‘The value of %1 is %2’,’What Time’,”What Time”);

7. Compile, save, close, and run the codeunit.

a. Click File > Save.
b. In the Save dialog box, verify that the Compiled check box is

selected, and then click OK.
c. Close the C/AL Editor window.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 10

d. In Object Designer, select codeunit 90000, My Codeunit.
e. Click Run, and then see the results.

Demonstration: Set Char Constants

Because of automatic type conversion, a Char variable can be set by using either a
number or a one character text. The following demonstration shows how Char
variables are assigned, and how they are displayed on screen.

Demonstration Steps

1. Design codeunit 90000, My Codeunit from the Object Designer.
a. In Object Designer, click Codeunit.
b. Select codeunit 90000, My Codeunit, and then click Design.

2. In the OnRun trigger, write code that assigns the value to the Ch

variable, by using numeric and character constants.
a. In the OnRun trigger, append the following code:

Code Example

Ch := 65;
MESSAGE('The value of %1 is %2','Ch',Ch);
Ch := 'A';
MESSAGE('The value of %1 is %2','Ch',Ch);

3. Compile, save, close, and run the codeunit.
a. Click File > Save.

b. In the Save dialog box, verify that the Compiled check box is
selected, and then click OK.

c. Close the C/AL Editor window.
d. In Object Designer, select codeunit 90000, My Codeunit.
e. Click Run, and then see the results.

 Note: Both 65 and 'A' result in the same value shown in the message. This is
because 65 is the ASCII code for the uppercase A. Experiment with other numbers to
see results.

Demonstration: Set Option Constants

Option variables map to integers. You can assign a value to an option variable by
using a numeric value. In C/AL, you can also write option constants and assign
option variables by using special syntax. The following demonstration shows how
to assign values to option variables.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 11

Demonstration Steps

1. Design codeunit 90000, My Codeunit from the Object Designer.

a. In Object Designer, click Codeunit.
b. Select codeunit 90000, My Codeunit, and then click Design.

2. In the OnRun trigger, write code that assigns a value to the Color
variable, from an integer constant, and from an option constant. The
code should display the variable name and value on screen for each
code type.

a. In the OnRun trigger, append the following code:

Color := 2;
MESSAGE('The value of %1 is %2','Color',Color);
Color := Color::Yellow;
MESSAGE('The value of %1 is %2','Color',Color);

3. Compile, save, close, and run the codeunit.
a. Click File > Save.
b. In the Save dialog window, verify that the Compiled check box is

selected, and then click OK.
c. Close the C/AL Editor window.
d. In Object Designer, select codeunit 90000, My Codeunit.
e. Click Run, and then see the results.

Demonstration: Compile-Time and Run-Time Errors

Not every value can be converted automatically to a value of another type. Errors
result if you try to convert types that cannot be converted automatically. Some
obvious errors, such as assigning a text constant to an integer variable, are
detected and reported by the C/AL compiler, whereas some less obvious errors,
such as assigning a value from another variable outside the data type boundaries,
are only detected and reported during run time.

The following demonstration shows the concepts of compile-time and run-time
errors.

Demonstration Steps

1. Design codeunit 90000, My Codeunit from the Object Designer.

a. In Object Designer, click Codeunit.
b. Select codeunit 90000, My Codeunit, and then click Design.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 12

2. In the OnRun trigger, append the code which assigns both correct

and incorrect values. Compile, save, and run the codeunit after every
line that you write.
a. In the OnRun trigger, append the following code:

Add the lines one at a time. Compile, save, close, and run the codeunit between
each line of code to view any error messages. After a compile time error occurs,
delete that line of code.

Description := 'Now is the time. Here is the place.';
LoopNo := 27.5;
YesOrNo := 1;
Amount := 27.5;

LoopNo := Amount;

 Note: Only the first and the fourth lines actually compile, as the compiler
does not compile code that it recognizes does not work.

Because the first line contains a constant and variable of type text, the complier
does not discover the overflow until the codeunit executes. The over happens
because the Description is defined as 30 characters long, however, the constant is
36.

For the fourth line of code, the Amount contains a value that cannot be converted
to an integer. This error was discovered when the codeunit executes.

These kinds of errors are known as run-time errors. When a run-time error occurs,
it stops all additional processing and produces an error message.

Expressions, Terms, and Operators
Expressions, terms, and operators are part of statements. An operator operates on
one or more terms that makes up to an expression which then evaluates to a
value.

Expression

An expression specifies the information to generate a desired value. Similar to a
variable and a constant, an expression has a type and a value. A constant's value is
always known; a variable's value is determined at run time. The system must
access memory for the value of constants and variables. However, an expression is
evaluated at run time to determine its value. The following are examples of
expressions:

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 13

• FunctionX + 7

• Quantity * UnitCost

Evaluation

To evaluate an expression means to follow the instructions set out in the formula
exactly, and then determine the expression's type and value at that time.
Depending on the values of the variables included in the expression, the value
may be different each time that the expression is evaluated, although its type
does not change.

Term

A term is the part of an expression that evaluates to a value. It can be a variable, a
constant, or a function call, as long as the function returns a value. A term can also
be another expression that is enclosed by parentheses. This kind of term is also
known as a sub-expression. The previous examples of expressions have the
following terms:

• FunctionX

• 7

• Quantity

• UnitCost

Operator

An operator is the part of an expression that acts upon either the term directly
following it (for example, a unary operator), or the terms on either side of it (for
example, a binary operator). Operators are represented by symbols, such as +, >,
/, and =) or reserved words, such as DIV and MOD. They are defined by the C/AL
and a developer cannot add or change them.

When an expression evaluates and the operator operates on its terms, it results in
a value that may be the value of the expression, or a term that is used by another
operator. Some examples of operators and their uses are as follows:

Example Remarks

5 + (-8) The + is a binary arithmetic operator, the - is a unary
arithmetic operator.

TotalCost/Quantity The / is a binary operator.

'cat' + ' and dog' The + is now used as a binary string operator.

(Quantity > 5) OR
(Cost <= 200)

The OR is a binary logical operator. The > and <= are
binary relational operators.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 14

The Expression Syntax

Because of its complexity, an expression's syntax requires several more syntax
statements than you have seen previously. The following list shows valid syntax for
several kinds of operators.

Operator Type Valid Syntax

<unary
operator>

+ | - | NOT

<string
operator>

+

<arithmetic
operator>

+ | - | * | / | DIV | MOD

<relational
operator>

< | > | = | <= | >= | <> | IN

<logical
operator>

NOT | OR | AND | XOR

<operator> <string operator> | <arithmetic operator> | <relational
operator> | <logical operator>

<simple term> <constant> | <variable> | <function call> | (<expression>)

<term> <simple term> | <unary operator>
<simple term>

<expression> <term> { <operator><term> }

The braces that enclose an element mean zero (0) or more repetitions of that
element.

The String Operator
The plus sign (+) is the only string operator. This indicates concatenation.
Concatenation is the operation that joins two or more strings together to make
one string. The concatenation operator is a binary operator. This means that it
operates on the term preceding it, and the term following it. Both terms must be
strings either of type Code or Text. If both terms are of type Code, the resulting
concatenation is of type Code. Otherwise,, it is of type Text.

Lesson Objectives

Describe the string operator.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 15

Evaluating Expressions

The following code lines show an example of an expression and how it is
evaluated.

Code Example

CodeA := 'HELLO THERE';
TextA := 'How Are You? ';
CodeB := CodeA + '. ' + TextA;

The third line of code is evaluated as follows:

• The value of CodeA is obtained. The constant value then is
concatenated to the end. Because CodeA is a Code while the
constant (a dot and a trailing space) is a Text, the result is a Text and
the value is 'HELLO THERE. '. This value becomes the first term for the
next concatenation operator.

• The value of TextA is obtained. This value then is concatenated to the
end of the previously generated text. Because both values are Text,
the result is also of type Text, and the value is 'HELLO THERE. How Are
You?'. This is the end of the expression. Therefore, this result becomes
the result of the expression, both the type and the value.

• When the expression is evaluated, the new value is assigned to the
CodeB variable by using the assignment operator. Because the
expression is of type Text and CodeB is of type Code, the result of the
expression must be converted to Code by using the automatic type
conversion. The result of this conversion is 'HELLO THERE. HOW ARE
YOU?' which is assigned to CodeB.

Demonstration: Use the String Operator

The following demonstration shows how to use the string operator.

Demonstration Steps

1. Create a new codeunit, and save it as codeunit 90001, My Codeunit
2.
a. In Object Designer, click Codeunit.
b. Click New. This opens the C/AL Editor window.

c. Click File > Save.
d. In the Save As dialog window, in the ID field, enter “90001”, in

the Name field, enter “My Codeunit 2”.
e. Verify that the Compiled check box is selected, and then click

OK.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 16

2. Define the following global variables: CodeA of type Code[30],

CodeB of type Code[50], and TextA of type Text[50].
a. Click View > C/AL Globals.
b. On the Variables tab, enter the following information:

Name DataType Length

CodeA Code 30

CodeB Code 50

TextA Text 50

c. Close the C/AL Globals window.
3. In the OnRun trigger, enter code that does the following:

 Assigns the “HELLO THERE” to CodeA, “How Are You” to
TextA.

 Assigns the result of concatenation of CodeA, “! “, and
TextA to the CodeB variable.

 Shows the value of the CodeB variable on screen.

a. Type the following code in the OnRun trigger:

CodeA := 'HELLO THERE';
TextA := 'How Are You? ';
CodeB := CodeA + '! ' + TextA;
MESSAGE('The value of %1 is %2','CodeB',CodeB);

4. Compile, save, close, and run the codeunit.
a. Click File > Save.
b. In the Save dialog window, verify that the Compiled check box is

selected, and then click OK.
c. Close the C/AL Editor.
d. In Object Designer, select the codeunit 90001, My Codeunit 2,

and then click Run.

Function Calls in Expressions
When characters exceed the maximum length of a string variable, run-time errors
occur. To prevent run-time errors, carefully design the program so that this error
never occurs. However, it is not always possible to design the program to avoid
errors that are caused by string length.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 17

The MAXSTRLEN Function

The MAXSTRLEN is a function that returns the maximum defined length of a
string variable.

This function has one parameter that is the string variable in question. The return
value is of type Integer.

The COPYSTR Function

The COPYSTR is a function that copies a substring of any length, from a specific
position in a string (text or code) to a new string.

This function has the following three parameters:

• The first parameter is the string to copy (original string).

• The second is the position of the first character to copy. For example,
if the second parameter is 1, the function starts to copy from the first
character. If the second parameter is 5, the function starts to copy
from the fifth character.

• The third parameter is the number of characters to copy. This is
optional. If it is not specified, the function copies from the start
position that is specified in the second parameter, to the last
character of the original string. If the number of characters to copy is
more than the characters in the original string, the maximum number
of characters of the original string is copied instead.

The return value is a string either of type Text or Code, depending on the type of
the original string in the first parameter.

Demonstration: Use the MAXSTRLEN and the COPYSTR
Functions

The following demonstration shows how to use the MAXSTRLEN and COPYSTR
functions in an expression.

Demonstration Steps

1. Design codeunit 90001, My Codeunit 2 from the Object Designer.
a. In Object Designer, select the codeunit 90001, My Codeunit 2.
b. Click Design to open the codeunit in the C/AL Editor.

2. Define the following global variables: MaxChar of type Integer, and

Description of type Text.
a. Click View > C/AL Globals.

b. On the Variables tab, enter the following information, under the

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 18

already defined variables:

Name DataType Length

MaxChar Integer

Description Text 30

c. Close the C/AL Globals window.

3. In the OnRun trigger, append the code that sets the MaxChar
variable to the maximum length of the Description variable, and
then shows the value of the MaxChar variable on the screen.
a. In the OnRun trigger, enter the following code under the last line

of code:

MaxChar := MAXSTRLEN(Description);

MESSAGE(‘The value of %1 is %2’,’MaxChar’,MaxChar);

 Note: The result is that MaxChar is set to 30 which is the length of the
Description variable. By using the MAXSTRLEN function, you know how many
characters a variable can hold . Therefore, you can prevent overflowing the variable
by carefully writing the code.

4. Under the last line of code, enter the code that does the following:
 Assigns the result of the concatenation of the “The

message is” and CodeB to the Description variable.

 Displays the value of the Description variable on screen.

a. Under the last line of code, enter the following code:

Description := ‘The message is: ‘ + CodeB;

MESSAGE(‘The value of %1 is %2’,’Description’,Description);

5. Compile, save, close, and run the codeunit.
a. Click File > Save.
b. In the Save dialog window, verify that the Compiled check box is

selected, and then click OK.

c. Close the C/AL Editor.
d. In Object Designer, select the codeunit 90001, My Codeunit 2,

and then click Run.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 19

 Note: The expected run-time error occurs. The assignment statement assigns
the value of the expression on its right to the variable on its left. In this case, the
expression results in a string that is longer than the maximum that the Description
variable can hold (30 characters). To avoid this issue, use the COPYSTR function to
assign only as many characters as the target variable can hold.

6. Design codeunit 90001, My Codeunit 2 from the Object Designer.

a. In Object Designer, select the codeunit 90001, My Codeunit 2.
b. Click Design to open the codeunit in the C/AL Editor.

7. Change the line that assigns the Description variable so that it only

assigns as many characters as Description can hold. Use the
COPYSTR and MAXSTRLEN functions.
a. Go to the line that assigns the Description variable.
b. Change the line as follows:

Description := COPYSTR(‘The message is: ‘ +

CodeB,1,MAXSTRLEN(Description));

8. Compile, save, close, and run the codeunit.
a. Click File > Save.

b. In the Save dialog window, verify that the Compiled check box is
selected, and then click OK.

c. Close the C/AL Editor.
d. In Object Designer, select the codeunit 90001, My Codeunit 2,

and then click Run.

 Note: The run-time error no longer is displayed. Instead, the value of the
Description variable only includes the characters that meet the 30 character
maximum length limitation.

How This Example Works

The expression is to the right of the assignment statement. Here is the original
expression:

Code Example

COPYSTR(‘The message is: ‘ +

CodeB,1,MAXSTRLEN(Description))

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 20

To evaluate a function like COPYSTR, you must first evaluate each of its
parameters. The first step is to obtain the value of CodeB and concatenate it (note
the plus sign [+]) with the string constant. The result is as follows:

Code Example

COPYSTR(‘The message is: HELLO THERE. HOW ARE
YOU?’,1,MAXSTRLEN(Description))

The next step is to evaluate the second parameter. Because this is a constant, it is
straightforward.

After you evaluate the second parameter, evaluate the third parameter. This
parameter is a function that returns the defined length of its parameter. This must
be a variable, not an expression. The result is as follows:

Code Example

COPYSTR(‘The message is: HELLO THERE. HOW ARE YOU?’,1,30)

The final step is to evaluate the COPYSTR function. In this case, COPYSTR
function copies characters from the text in the first parameter, starting with the
first character, the second parameter, and copying up to 30 characters, the third
parameter. The result is as follows:

Code Example

‘The message is: HELLO THERE. H’

Now that the expression is evaluated, the assignment can be performed:

Code Example

Description := ‘The message is: HELLO THERE. H’;

The Description variable has a new value.

Numeric Expressions
Numeric expressions are expressions that result in a numeric value. The individual
terms in a numeric expression may not necessarily be numeric. Numeric
expressions use at least one arithmetic operator. When a numeric expression is
evaluated, the result is a numeric data type. This can be one of the following:
decimal, integer, option, or char.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 21

Arithmetic Operator

An arithmetic operator is used in numeric expressions to operate on numeric or
non-numeric terms. Examples of arithmetic operators include addition,
subtraction, multiplication, and division symbols.

Numeric Expression

A numeric expression is an expression that results in a numeric value. The
following are examples of numeric expressions:

• 5 + 2 * 3

• 10 / 2

Operator Precedence

Operator precedence is the order that operators are evaluated in an expression.
Operators with a higher precedence are evaluated before operators with a lower
precedence. For example, the multiplication operator (*) has a higher precedence
than the addition operator (+). Therefore, the expression 5 + 2 * 3 evaluates to 11,
instead of 21. This is the same under the usual left to right rule.

Arithmetic Operators
There are six arithmetic operators in C/AL:

• Plus Operator (+)

• Minus Operator (-)

• Times Operator (*)

• Divide Operator (/)

• Integer Divide Operator (DIV)

• Modulus Operator (MOD)

The Plus (+) Operator

The plus operator is used for several purposes. It can be used as a unary or a
binary operator.

If the terms on either side of the plus operator are both strings, the plus operator
is used as a string operator, to concatenate the two strings. The plus operator that
is used with the string term is not an example of an arithmetic operator, because
the result is not numeric.

If the plus operator has no term in front of it, it is used as a unary operator. When
it is used as a unary operator, its purpose is to leave the sign of the term following

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 22

it unchanged. When it is used as a unary operator, it does nothing and is rarely
used. If it is used, its purpose is to explicitly show that the value of the term is
positive. The following is an example of an expression. The first example was
created by using the plus operator as a unary operator. The second example
shows the same expression without the plus operator which evaluates to the same
result.

• IntVariable * +11

• IntVariable * 11

The plus operator is usually used as a binary operator. The purpose is to add the
term following it to the term preceding it. Both terms can be numeric, or one term
can be a numeric and the other can be a date or a time. The expression results to
a different data type, depending on the type of the terms.

The following rules apply to the plus operator:

• If either term is a decimal value, the result is decimal.

• If both terms are char values and the sum is less than 256, the result is
char; otherwise, the result is integer.

• If both terms are option or integer values and the sum is in the
allowed values for integers, the result is integer; otherwise, the result
is decimal.

• If the term preceding the operator is a date and the term following
the operator is an integer, the result is a date that is the integer
number of days away from the date term. Therefore, the result of
03202001D + 7 is 03272001D. If the resulting value is an invalid date,
a run-time error occurs.

• If the term preceding the operator is a time and the term following
the operator is an integer, the result is a time that is the integer
number of milliseconds away from the time term. Therefore, the
result of 115815T + 350000 is 120405T. If the resulting value is an
invalid time, a run-time error occurs.

The plus operator that is used with a date or a time term is not an example of an
arithmetic operator, because the result is not numeric. The following list shows
combinations of the preceding and following terms, and their results.

Plus (+) Char Option Integer Decimal Date Time

Char Char Integer Integer Decimal N/A N/A

Option Integer Integer Integer Decimal N/A N/A

Integer Integer Integer Integer Decimal N/A N/A

Decimal Decimal Decimal Decimal Decimal N/A N/A

Date Date Date Date N/A N/A N/A

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 23

Plus (+) Char Option Integer Decimal Date Time

Time Time Time Time N/A N/A N/A

The left column indicates the type of the term that precedes the plus operator.
The top row indicates the type of the term that follows the plus operator.

If the result is a char, but the value is not a valid char value, the result type
changes to an integer. If the result is an integer but the value is not a valid integer
value, the result type changes to a decimal.

The Minus (-) Operator

Similar to the plus operator, the minus operator can be used as a binary operator
or a unary operator. When it is used as a unary operator, its purpose is to change
the sign of the term following it.

When it is used as a binary operator, the minus operator's purpose is to subtract
the term following it from the term preceding it. Both terms can be numeric, and
both can be a date or a time, or when the following term is an integer, the
preceding term can be a date or a time. The expression results to a different data
type, depending on the type of the terms.

The following rules apply to the minus operator.

• If the first term is a date and the second is an integer, the result is a
date that is the integer number of days before the date term.
Therefore, the result of 02252001D - 7 is 02182001D. If the resulting
value is an invalid date, a run-time error occurs.

• If the first term is a time and the second term is an integer, the result
is a time that is the integer number of milliseconds before the time
term. Therefore, the result of 115815T - 350000 is 115225T. If the
resulting value is an invalid time, a run-time error occurs.

• If one date is subtracted from another, the result is the integer
number of days between the two dates. If one time is subtracted from
another, the result is the integer number of milliseconds between the
two times.

The following list shows combinations of preceding and following terms, and their
results.

Minus (-) Char Option Integer Decimal Date Time

Char Char Integer Integer Decimal N/A N/A

Option Integer Integer Integer Decimal N/A N/A

Integer Integer Integer Integer Decimal N/A N/A

Decimal Decimal Decimal Decimal Decimal N/A N/A

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 24

Minus (-) Char Option Integer Decimal Date Time

Date Date Date Date N/A Integer N/A

Time Time Time Time N/A N/A Integer

The left column indicates the type of the term preceding the minus operator. The
top row indicates the type of the term following the minus operator.

If the result is a char, but the value is not a valid char value, the result type
changes to an integer. If the result is an integer but the value is not a valid integer
value, the result type changes to a decimal.

The Times (*) Operator

The times operator (or the multiplication operator) is used only as a binary
operator. Its purpose is to multiply the numeric term preceding it by the numeric
term following it. The following list shows combinations of the preceding and
following terms, and their results.

Times (*) Char Option Integer Decimal

Char Char Integer Integer Decimal

Option Integer Integer Integer Decimal

Integer Integer Integer Integer Decimal

Decimal Decimal Decimal Decimal Decimal

The automatic conversion rules apply, from char to integer, and integer to
decimal.

The Divide (/) Operator

The divide operator is used only as a binary operator. Its purpose is to divide the
numeric term preceding it by the numeric term following it. The result of this
division is always of type Decimal. If the second term is zero (0), a run-time error
occurs.

The Integer Divide (DIV) Operator

The integer divide operator is used only as a binary operator. Its purpose is to
divide the numeric term preceding it by the numeric term following it. The result
type of this division is always of type Integer. If the second term is zero (0), a run-
time error occurs. Any decimals that resulted from an ordinary division are
dropped. Therefore, the result of 17 DIV 8 is 2, whereas the result of 17 DIV 9 is 1.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 25

The Modulus (MOD) Operator

The modulus operator (or the remainder operator) is used only as a binary
operator. Its purpose is to divide the numeric term preceding it by the numeric
term following it by using the integer division method and then returning the
remainder of that division. The result of this operation is always of type Integer. If
the second term is zero (0), a run-time error occurs. The following shows examples
of modulus operator usage.

• 17 MOD 8 = 1

• 17 MOD 9 = 8

The modulus operator requires two numbers. The first number is the one that is
converted by using the modulus function. The second number represents the
number system being used. By definition, the number system starts at zero and
ends at the second number minus one. For example, if the second number is ten,
the number system that is used is from zero to nine. Therefore, the modulus
represents what the first number converts to, if the numbering system only had
the number of values that are indicated by the second number, and the first
number is forced to restart at zero.

The following example shows several modulus operations:

• 15 modulus 10 is 5 (because 9 is the last number available, 10 is
represented by going back from the start, or zero, 11 is 1, 12 is 2, and
so on)

• 6 modulus 10 is 6

• 10 modulus 10 is 0

• 127 modulus 10 is 7

The result is the same if the first number is divided by the second by using an
integer only. The remainder is returned as the value.

Operator Precedence Levels

The three levels of operator precedence used for arithmetic operators are as
follows:

• The highest level is the unary operator level. This includes both
positive (+) and negative (-).

• The second is the multiplicative operator level. This includes
multiplication (*), both kinds of divides (/, DIV), and modulus (MOD).

• The lowest precedence level is the additive operator level. This
includes both addition (+) and subtraction (-) binary operators.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 26

General evaluations of expressions go from left to right. However, if one operator
has a higher precedence level than another, it is evaluated first. To override these,
developers can create subexpressions by enclosing parts of an expression with
parentheses. Sub-expressions are always evaluated first.

Demonstration: Use the Arithmetic Operators

The following demonstration shows how to use the arithmetic operators and
examine the operator precedence.

Demonstration Steps

1. Create a new codeunit, and save it as codeunit 90002, My Codeunit
3.
a. In Object Designer, click Codeunit.
b. Click New. This opens the C/AL Editor window.
c. Click File > Save.

d. In the Save As dialog window, in the ID field, enter “90002”, in
the Name field, enter “My Codeunit 3”.

e. Verify that the Compiled check box is selected, and then click
OK.

2. Define the global variables:

a. Click View > C/AL Globals.
b. On the Variables tab, enter the following information:

Name DataType

Int1 Integer

Int2 Integer

IntResult Integer

Amt1 Decimal

Amt2 Decimal

AmtResult Decimal

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 27

3. In the OnRun trigger, enter the code as shown in the detailed steps.

a. In the OnRun trigger, enter the following code:

Int1 := 25 DIV 3;
Int2 := 25 MOD 3;
IntResult := Int1 * 3 + Int2;
MESSAGE('The value of %1 is %2','IntResult',IntResult);
Amt1 := 25 / 3;
Amt2 := 0.00000000000000001;
AmtResult := (Amt1 - Int1) * 3 + Amt2;
MESSAGE('The value of %1 is %2','AmtResult',AmtResult);

4. Save, compile, close, and run the codeunit.
a. Click File > Save.
b. In the Save dialog window, verify that the Compiled check box is

selected, and then click OK.
c. Close the C/AL Editor.
d. In Object Designer, select the codeunit 90002, My Codeunit 3,

and then click Run.

 Note: The result shows that the IntResult is 25 and AmtResult is 1.

5. Design codeunit 90002, My Codeunit 3 from the Object Designer.
a. In Object Designer, select the codeunit 90002, My Codeunit 3.
b. Click Design to open the codeunit in the C/AL Editor.

6. In the OnRun trigger, enter the code as shown in the detailed steps.
a. In the OnRun trigger, under the last line of code, enter the

following code:

Int1 := 5 + 3 * 6 - 2 DIV -2;
MESSAGE('The value of %1 is %2','Int1',Int1);

7. Save, compile, close, and run the codeunit.
a. Click File > Save.

b. In the Save dialog window, verify that the Compiled check box is
selected, and then click OK.

c. Close the C/AL Editor.
d. In Object Designer, select the codeunit 90002, My Codeunit 3,

and then click Run.

 Note: The result is 24.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 28

Examine the Precedence Rules

These steps describe the precedence rules that are used to evaluate this code:

1. The times operator (*) is evaluated, multiplying its preceding term (3)
by its following term (6). This results in a new term of 18, leaving the
following:

Code Example

Int1 := 5 + 18 – 2 DIV -2

2. The integer divide operator (DIV) is evaluated, dividing its preceding
term (2) by its following term (-2). This results in a new term of minus
one.

Code Example

Int1 := 5 + 18 – (-1)

3. The plus operator (+) is evaluated, adding its following term (18) to its
preceding term (5). This results in a new term of 23.

Code Example

Int1 := 23 – (-1)

The binary minus operator (-) is evaluated, subtracting its following term (-1) from
its preceding term (23). This results in the value of the complete expression; 24 (23
minus a negative 1 is 24).

Demonstration: Add Sub-Expressions

The following demonstration shows how the sub-expressions alter the precedence
during expression evaluation.

Demonstration Steps

1. Design codeunit 90002, My Codeunit 3 from the Object Designer.

a. In Object Designer, select the codeunit 90002, My Codeunit 3.
b. Click Design to open the codeunit in the C/AL Editor.

2. In the OnRun trigger, enter the code as shown in the detailed steps.

a. In the OnRun trigger, change the assignment for the Int1
variable, as follows:

Int1 := (5 + 3) * (6 - 2) DIV -2;

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 29

3. Save, compile, close, and run the codeunit.

a. Click File > Save.
b. In the Save dialog window, verify that the Compiled check box is

selected, and then click OK.
c. Close the C/AL Editor.
d. In Object Designer, select the codeunit 90002, My Codeunit 3,

and then click Run.

 Note: The result is -16.

Examine the Effect of Sub-Expressions

Because sub-expressions are evaluated first, this code evaluates as follows:

1. The first sub-expression is evaluated. The plus operator (+) adds its
following term (3) to its preceding term (5), and results in the sub-
expression value of 8. This value now becomes a term of the complete
expression.

Code Example

Int1 := 8 * (6 – 2) DIV -2;

2. The next sub-expression is evaluated. The binary minus operator (-)
subtracts its following term (2) from its preceding term (6) and results
in the value of 4 for the sub-expression. This value is now a term of
the complete expression.

3. The unary minus operator (-) and its following term (2) is evaluated
and results in a value of negative 2 (-2).

4. The times operator (*) is evaluated, multiplying its preceding term (8)
by its following term, (4) and results in a new term of 32.

Code Example

Int1 := 32 DIV -2;

The integer divide operator (DIV) is evaluated, dividing its preceding term (32) by
its following term (-2). This results in the value of the complete expression:
negative 16 (-16).

Code Example

Int1 := -16;

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 30

Relational and Logical Expressions
Logical and relational expressions result in a Boolean value. These expressions use
logical or relational operators to determine their value. When logical and
relational expressions are evaluated, the result is always either TRUE or FALSE.

Relational Operator

A relational operator is used in a relational expression to test a relationship
between the term preceding it, and the term following it. The available relational
operators are as follows:

• = (equal to)

• < (less than)

• > (greater than)

• <= (less than or equal to)

• >= (greater than or equal to)

• <> (not equal to)

• IN (included in set)

Relational Expression

A relational expression is an expression that compares values and results in a
Boolean value. The individual terms in a relational expression usually are not of
type Boolean. However, they must be comparable with one another. For example,
an integer is comparable with a decimal, because both are numeric. But an integer
is not comparable to a text, because one is numeric and the other is string. The
following are examples of relational expressions:

• 5 <= IntVar

• DecVar <> IntVar

Logical Operator

A logical operator is used in a logical expression with one or two Boolean terms.
The available logical operators are as follows:

• AND

• OR

• XOR

• NOT

Except for NOT, which is a unary operator, the rest of the logical operators are
binary operators.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 31

Logical Expressions

A logical expression is also an expression that compares values and results in a
Boolean value. The difference between a relational expression is and a logical
expression is that the terms in a logical expression must all be of type Boolean.
The following are examples of logical expressions:

• TRUE AND FALSE (This logical expression has two terms and it results
to FALSE.)

• FALSE OR NOT FALSE (This logical expression has two terms and two
logical operators and it results to TRUE.)

• (Quantity > 5) OR (Quantity <= 10) OR (Price < 100) (This expression
is a combination of relational and logical expressions.)

Relational Expressions for Comparison
Except for IN, all relational operators compare two values. These two values must
be of the same type, or of comparable types. All the numeric types (for example,
integer and decimal) are comparable. Both the string types (text and code) are
also comparable.

Numeric Comparisons

If a comparison is performed between two numbers, the numeric rules apply. The
following are examples of relational expressions for numeric comparisons:

• 57 = 57 is TRUE

• 57 = 58 is FALSE

• 57 < 58 is TRUE

• 57 <= 58 is TRUE

• 57 > 58 is FALSE

• 57 >= 57 is TRUE

• 57 <> 58 is TRUE

String Comparisons

In Microsoft Dynamics NAV Development Environment, string comparisons use a
modified alphabetical order, not the ASCII order.

One difference is that special characters in languages such as the ø in Danish or
the ñ in Spanish are positioned in their correct alphabetical order and not
relegated to the end as they are in ASCII order.

Another difference is that the digits are positioned after the letters in alphabetical
order, whereas in ASCII order, they are positioned before the letters.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 32

Finally, in alphabetical order, the lowercase letters are positioned before the
uppercase letters, whereas in ASCII order, the lowercase letters are positioned
after the uppercase letters. The following are examples of relational expressions
for string comparisons:

Relational Expression In Native Database

'X' = 'X' TRUE

'X' = 'x' FALSE

'ark' > 'arc' TRUE

'arC' > 'arc' TRUE

'10' > '2' FALSE

'00' <= 'OO' FALSE

'é' > 'f' FALSE

'abc' < 'ab' FALSE

' a' <> 'a' TRUE

There are special rules when a code variable is used in a string comparison. All
trailing and leading spaces are removed and all letters are converted to
uppercase. In addition, code values that consist of only digits are right-justified
before comparison. Therefore, in Microsoft Dynamics NAV® Development
Environment, the fifth expression in the previous example ('10' > '2') evaluates to
TRUE if those values are assigned into variables of type Code before comparison.

Date and Time Comparisons

Date and Time values are compared by using the general calendar rule. Dates (or
times) that are in the future are greater than dates (or times) that are in the past.
A Closing Date which represents the last second of the last minute of the last hour
of the day, is greater than the Normal Date for the same day, and less than the
Normal Date for the next day.

Boolean Comparisons

Boolean values usually are not compared by using relational operators. However,
when they are, TRUE is considered greater than FALSE.

Relational Operator Precedence

Relational operators have the lowest precedence of any operator. Relational
comparison is performed after the expressions on either side of the relational
operator are evaluated.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 33

Therefore, the following example evaluates to TRUE:

• 5 * 7 < 6 * 6

The expression on the left side of the relational operator (5 * 7) is first evaluated
to 35. Then the expression on the right side of the relational operator (6 * 6) is
evaluated to 36. Then the value 35 is compared to 36.

Relational Expressions for Set Inclusion
The IN relational operator is used to determine inclusion. It operates on two
terms, and determines whether the preceding term is in the following term. The
following term must be a list of values, or a set, to compare. This list is part of the
relational expression and is known as a set constant.

Set Constant

There are no variables of type set, but there are constants of type set. A set
constant consists of an opening bracket ([) that is followed by a list of values that
are separated by commas, and are followed by a closing bracket (]). For example,
a set of all the even numbers from one to ten looks as follows:

Code Example

[2,4,6,8,10]

In addition to individual values, a member of a set can also be a range of values. A
set of all the numbers from one to twenty not evenly divisible by ten looks as
follows:

Code Example

[1..9,11..19]

In addition, a specific value or a value that is used as part of a range can be an
expression. A set of list of numbers from 10 to 20, but excluding the variable n (as
long as n is from 10 to 20), looks as follows:

Code Example

[10..n-1,n+1..20]

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 34

IN Operator

The IN operator’s operation checks whether the value of the term that precedes it
is included in the term that follows it (the set). The following are examples of
relational expressions for set inclusion:

• 5 IN [2,4,6,8,10] is FALSE

• 5 IN [2,4..6,8,10] is TRUE

• 10 IN [1..9,11..19] is FALSE

• 'M' IN ['A'..'Z'] is TRUE

Logical Expressions
A logical expression evaluates Boolean terms and results in a Boolean value. In
some cases, the Boolean terms are results of relational expressions.

Logical Operator Results

The following list reviews logical operator results:

• The NOT operator is a unary operator that logically negates the term
following it. This changes TRUE to FALSE and FALSE to TRUE.

• The AND operator results in TRUE if both of the terms on either side
of it are TRUE and otherwise results in FALSE.

• The OR operator results in FALSE if both of the terms on either side of
it are FALSE and otherwise results in TRUE.

• The XOR operator results in TRUE if both of the terms on either side
of it are not the same and otherwise results in FALSE.

The truth tables summarize these facts as follows:

FIGURE 5.2: THE LOGICAL OPERATOR TRUTH TABLES

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 35

Logical Operator Precedence

The NOT operator has the same precedence as the other unary operators. This
means that the NOT operator is evaluated before any other operator in the same
expression.

The AND operator has the same precedence as the multiplicative operators,
whereas the XOR and OR operators have the same precedence as the additive
operators. The relational operators have the lowest precedence of all.

The following table summarizes the operator precedence of all the operators
covered to this point:

Type of
Operator

Operator Comments

Sub-expression
or Terms

() [] . :: Sub-expression in parentheses is
evaluated first.

Unary + - NOT Highest precedence in an expression.

Multiplicative * / DIV MOD
AND

Additive + - OR XOR

Relational < <= = >= > <>
IN

Lowest precedence in an expression.

Range .. Used in Set Constants.

When you use logical expressions, you should realize that the relational operators
are lower in precedence than the logical operators. For example, to see whether a
variable N is between 10 and 20 exclusively, the following expression cannot be
used:

1. N >= 10 AND N <= 20

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 36

This is because the first operator to be evaluated is the AND operator, and the
preceding (10) and following (N) terms are an integer, and not Boolean terms.
This causes an error. Instead, use parentheses to force the relational operators to
be evaluated first, as the following example shows:

• (N >= 10) AND (N <= 20)

With the parentheses, the two relational expressions are evaluated first. This
results in two Boolean terms. Next the logical expression with the AND logical
operator and the two Boolean terms are evaluated.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 37

Lab 5.1: Use Logical and Relational Expressions in a
Page

Scenario

Isaac is a developer at CRONUS International Ltd. He wants to test the newly
acquired knowledge about logical operators. He wants to create a page, add
several controls and an action to it, and write code that calculates a Boolean
variable through a relational expression.

Exercise 1: Create a New Page
Exercise Scenario

Isaac creates a new page, defines the variables and the layout of the page, and
then adds an action that calculates a relational expression.

Task 1: Create a New Page

High Level Steps
1. Create a new blank page.
2. Save the page as 90005, My Test Page 1.

Detailed Steps
1. Create a new blank page.

a. In Object Designer, click Page.
b. Click New to create a new page.
c. Verify that the Create blank page option is selected, and then

click OK to create a blank page.

2. Save the page as 90005, My Test Page 1.

a. Click File > Save.
b. In the Save As dialog window, in the ID field, enter “90005”.
c. In the Name field, enter “My Test Page 1”.
d. Verify that the Compiled check box is selected, and then click

OK.

Task 2: Add Variables to the Page

High Level Steps
1. Define two global Integer variables, named Value1 and Value2, and

a global Boolean variable, named Result.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 38

Detailed Steps
1. Define two global Integer variables, named Value1 and Value2, and

a global Boolean variable, named Result.
a. On the View menu, click C/AL Globals.
b. On the Variables tab, enter the following information:

Name DataType

Value1 Integer

Value2 Integer

Result Boolean

c. Close the C/AL Globals window.

Task 3: Add Controls to the Page

High Level Steps
1. Under the ContentArea, add a group that is named General.
2. Under this group, add two groups that are named Input and Output.
3. Add field controls for Value1 and Value2 to the Input group, and for

Result to the Output group.
4. Compile and save the page.

Detailed Steps
1. Under the ContentArea, add a group that is named General.
2. Under this group, add two groups that are named Input and Output.
3. Add field controls for Value1 and Value2 to the Input group, and

for Result to the Output group.
a. In the Page Designer window, enter the following information:

Type SubType SourceExpr Caption

Container ContentArea My Test Page 1

 Group Group General

 Group Group Input

 Field Value1 Value 1

 Field Value2 Value 2

 Group Group Output

 Field Result Result

b. Verify that the General group is indented one level under the
ContentArea container.

c. Verify that the Input and Output groups are indented one level
under the General group.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 39

d. Verify that the fields are indented one level under their parent

groups.

The following figure shows the controls in the My Test Page 1 page:

FIGURE 5.3: MY TEST PAGE 1 WINDOW

4. Compile and save the page.

a. Click File > Save.
b. In the Save dialog window, verify that the Compiled check box is

selected.
c. Click OK.

Task 4: Add an Action to the Page

High Level Steps
1. In the ActionItems action container, create a new page action, and set

its caption to Execute.

2. Add code that sets the value of Result to TRUE if Value1 is higher
than Value2, when a user clicks the Execute action.

3. Compile, save, and close the page.
4. Run the page to verify the results.

Detailed Steps
1. In the ActionItems action container, create a new page action, and set

its caption to Execute.

a. Click View > Page Actions.
b. In the Action Designer, enter the following information:

Type SubType Caption

ActionContainer ActionItems <Action8>

 Action Execute

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 40

FIGURE 5.4: THE ACTION DESIGNER PAGE

2. Add code that sets the value of Result to TRUE if Value1 is higher

than Value2, when a user clicks the Execute action.
a. Select the Execute action, and then press F9 to access the C/AL

Editor.
b. In the OnAction trigger, enter the following code:

Code Example

Result := Value1 > Value2;

c. Close the C/AL Editor.
d. Close the Action Designer.

3. Compile, save, and close the page.

a. Click File > Save.

b. In the Save dialog window, verify that the Compiled check box is
selected.

c. Click OK.
d. Close the Page Designer.

4. Run the page to verify the results.

a. In the Object Designer, select page 90005, My Test Page 1.

b. Click Run.
c. In the My Test Page 1 page, in the Value 1 field, enter “10”, then

in the Value 2 field, enter “2”.
d. Verify that the Result check box is not selected.

e. On the Actions tab of the ribbon, click Execute.
f. Verify that the Result check box state changes to selected.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 41

The following figure shows the My Test Page 1 page after you click Execute:

FIGURE 5.5: MY TEST PAGE 1 WINDOW

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 42

Module Review
Module Review and Takeaways

Assignment statements provide the basic foundation for developing an
application by using C/AL. It lets developers assign values to variables. Assignment
statements can have automatic type conversions.

There are many kinds of expressions in C/SIDE. These include string expressions,
numeric expressions, relational, and logical expressions. Each type of expression is
identified by its operator. For example, numeric expressions are identified by
arithmetic operators; logical expressions are identified by logical operators. The
operator precedence rule governs the use of all operators.

Assignment statements and expressions are pieces that consist of code in C/SIDE.
Understanding assignment statements and different types of expressions help
developers write effective code in C/SIDE.

Test Your Knowledge

Test your knowledge with the following questions.

1. What is the expression in this assignment statement:

TextA := TextB;

2. In mathematics, the things that operators operate on are called operands.
What are these things called in programming expressions?

3. What does the plus operator (+) do to text variables or constants?

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 43

4. What is the expression in this assignment statement:

TextA := 'The ' + TextB;

5. What are the operators in this assignment statement:

TextA := 'The ' + TextB;

6. What are the terms in this assignment statement:

TextA := 'The ' + TextB;

7. Write down the result type and value of each of these expressions:

• 57 * 10

• 57 / 10

• 57 MOD 10

• 57 DIV 10

• 9 / 4 – 9 DIV 4

• (3 - 10) * - 5 - 10 + 2.5 * 4

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 44

8. For each of the following expressions, write down the value of the result of
evaluating the logical or relational expression:

• 5 * 7 > 3

• 5 * -7 > -36

• (3 > 5 - 1) OR (7 < 5 * 2)

• (27 MOD 5 = 2) AND (27 DIV 5 = 5)

• (5 > 3) XOR (7 = 7) AND (9 >= 10)

• (10 > 2) AND ('10' > '2')

• NOT (11 + 7 < 15) OR ('Great' > 'Greater') AND ('Less' < 'Lesser')

• TRUE OR FALSE = TRUE

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 45

Test Your Knowledge Solutions

Module Review and Takeaways

1. What is the expression in this assignment statement:

TextA := TextB;

MODEL ANSWER:

TextB

2. In mathematics, the things that operators operate on are called operands.
What are these things called in programming expressions?

MODEL ANSWER:

Terms.

3. What does the plus operator (+) do to text variables or constants?

MODEL ANSWER:

The plus operator (+) concatenates text variables or constants.

4. What is the expression in this assignment statement:

TextA := 'The ' + TextB;

MODEL ANSWER:

'The ' + TextB

5. What are the operators in this assignment statement:

TextA := 'The ' + TextB;

MODEL ANSWER:

:= and +

6. What are the terms in this assignment statement:

TextA := 'The ' + TextB;

MODEL ANSWER:

'The ' and TextB.

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 46

7. Write down the result type and value of each of these expressions:

• 57 * 10

• 57 / 10

• 57 MOD 10

• 57 DIV 10

• 9 / 4 – 9 DIV 4

• (3 - 10) * - 5 - 10 + 2.5 * 4

MODEL ANSWER:

Expression Result Result Data Type

57 * 10 570 Integer

57 / 10 5.7 Decimal

57 MOD 10 7 Integer

57 DIV 10 5 Integer

9 / 4 – 9 DIV 4 0.25 Decimal

(3 - 10) * - 5 - 10 + 2.5 * 4 35 Decimal

8. For each of the following expressions, write down the value of the result of
evaluating the logical or relational expression:

• 5 * 7 > 3

• 5 * -7 > -36

• (3 > 5 - 1) OR (7 < 5 * 2)

• (27 MOD 5 = 2) AND (27 DIV 5 = 5)

• (5 > 3) XOR (7 = 7) AND (9 >= 10)

• (10 > 2) AND ('10' > '2')

• NOT (11 + 7 < 15) OR ('Great' > 'Greater') AND ('Less' < 'Lesser')

• TRUE OR FALSE = TRUE

MODEL ANSWER:

Expression Result

5 * 7 > 3 TRUE

5 * -7 > -36 TRUE

(3 > 5 - 1) OR (7 < 5 * 2) TRUE

(27 MOD 5 = 2) AND (27 DIV 5 = 5) TRUE

(5 > 3) XOR (7 = 7) AND (9 >= 10) TRUE

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

Module 5: Assignment Statements and Expressions

5 - 47

Expression Result

(10 > 2) AND ('10' > '2') FALSE

NOT (11 + 7 < 15) OR ('Great' > 'Greater')
AND ('Less' < 'Lesser')

TRUE

TRUE OR FALSE = TRUE TRUE

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

C/SIDE Introduction in Microsoft Dynamics® NAV 2013

5 - 48

Microsoft Official Training Materials for Microsoft Dynamics ®
Your use of this content is subject to your current services agreement

	Module 5: Assignment Statements and Expressions
	Module Overview
	Objectives

	Assignment Statements
	Assignment
	Statement
	Assignment Statement

	The Syntax of Statements
	Function Call Statement
	Code Example

	Assignment Statement
	Code Example

	Assignment Operator
	The Statement Separator
	Code Example

	Automatic Type Conversions
	String Data Types
	Code Example

	Numeric Data Types
	Other Data Types

	Use Assignment Statements and the Symbol Menu
	Demonstration: Create a Simple Assignment Statement
	Demonstration Steps

	Demonstration: Create Multiple Messages
	Demonstration Steps

	Demonstration: Use the Symbol Menu
	Demonstration Steps
	Code Example

	Demonstration: Set Char Constants
	Demonstration Steps
	Code Example

	Demonstration: Set Option Constants
	Demonstration Steps

	Demonstration: Compile-Time and Run-Time Errors
	Demonstration Steps

	Expressions, Terms, and Operators
	Expression
	Evaluation
	Term
	Operator
	The Expression Syntax

	The String Operator
	Lesson Objectives
	Evaluating Expressions
	Code Example

	Demonstration: Use the String Operator
	Demonstration Steps

	Function Calls in Expressions
	The MAXSTRLEN Function
	The COPYSTR Function
	Demonstration: Use the MAXSTRLEN and the COPYSTR Functions
	Demonstration Steps

	How This Example Works
	Code Example
	Code Example
	Code Example
	Code Example
	Code Example

	Numeric Expressions
	Arithmetic Operator
	Numeric Expression
	Operator Precedence

	Arithmetic Operators
	The Plus (+) Operator
	The Minus (-) Operator
	The Times (*) Operator
	The Divide (/) Operator
	The Integer Divide (DIV) Operator
	The Modulus (MOD) Operator
	Operator Precedence Levels
	Demonstration: Use the Arithmetic Operators
	Demonstration Steps

	Examine the Precedence Rules
	Code Example
	Code Example
	Code Example

	Demonstration: Add Sub-Expressions
	Demonstration Steps

	Examine the Effect of Sub-Expressions
	Code Example
	Code Example
	Code Example

	Relational and Logical Expressions
	Relational Operator
	Relational Expression
	Logical Operator
	Logical Expressions

	Relational Expressions for Comparison
	Numeric Comparisons
	String Comparisons
	Date and Time Comparisons
	Boolean Comparisons
	Relational Operator Precedence

	Relational Expressions for Set Inclusion
	Set Constant
	Code Example
	Code Example
	Code Example

	IN Operator

	Logical Expressions
	Logical Operator Results
	Logical Operator Precedence

	Lab 5.1: Use Logical and Relational Expressions in a Page
	Scenario
	Exercise 1: Create a New Page
	Exercise Scenario
	Task 1: Create a New Page
	High Level Steps
	Detailed Steps

	Task 2: Add Variables to the Page
	High Level Steps
	Detailed Steps

	Task 3: Add Controls to the Page
	High Level Steps
	Detailed Steps

	Task 4: Add an Action to the Page
	High Level Steps
	Detailed Steps
	Code Example

	Module Review
	Module Review and Takeaways
	Test Your Knowledge

	Test Your Knowledge Solutions
	Module Review and Takeaways

